IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v27y2023i6p1553-1566.html
   My bibliography  Save this article

Characterizing the spatiotemporal evolution of building material stock in China's Greater Bay Area: A statistical regression method

Author

Listed:
  • Liang Yuan
  • Weisheng Lu
  • Yijie Wu

Abstract

More than half of the materials extracted from natural environments eventually accumulate as building material stock (BMS). From a linear‐to‐circular economy perspective, BMS transforms the building sector from a virgin material consumer and a waste generator to a future depository of secondary resources. Studies characterizing the amount and distribution of BMS adopt different approaches, but high data requirements restrict their applicability. This research proposes an alternative method for regional BMS quantification. The method leverages the permanent population, electricity consumption, and BMS of a sample city to develop a statistical regression model; then uses it to estimate the BMS of a larger, homogenous region. With relatively low data requirements, the new method is especially applicable in underdeveloped areas where data required for BMS quantification methods are usually unavailable or incomplete. We apply the method to characterize the spatiotemporal evolution of BMS in China's Greater Bay Area. From 2000 to 2021, the total BMS in this region increased from 4.4 to 7.7 billion tonnes, with concrete, brick, and steel accounting for 72.32%, 17.57%, and 4.71% of the total BMS, respectively. The most rapid BMS growth occurred in Guangzhou (from 534.75 to 1277.82 Mt) and Shenzhen (517.80 to 1235.48 Mt). A core–edge BMS accumulation pattern emerged in this area while the BMS peak showed a coast‐to‐inland shift. Future studies can explore generalizing this new method to characterize BMS in other developing regions.

Suggested Citation

  • Liang Yuan & Weisheng Lu & Yijie Wu, 2023. "Characterizing the spatiotemporal evolution of building material stock in China's Greater Bay Area: A statistical regression method," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1553-1566, December.
  • Handle: RePEc:bla:inecol:v:27:y:2023:i:6:p:1553-1566
    DOI: 10.1111/jiec.13438
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13438
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13438?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andreas Gassner & Jakob Lederer & Johann Fellner, 2020. "Material stock development of the transport sector in the city of Vienna," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1364-1378, December.
    2. Hong, Lixuan & Zhou, Nan & Feng, Wei & Khanna, Nina & Fridley, David & Zhao, Yongqiang & Sandholt, Kaare, 2016. "Building stock dynamics and its impacts on materials and energy demand in China," Energy Policy, Elsevier, vol. 94(C), pages 47-55.
    3. Chenling Fu & Yan Zhang & Tianjie Deng & Ichiro Daigo, 2022. "The evolution of material stock research: From exploring to rising to hot studies," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 462-476, April.
    4. Carlos Mesta & Ramzy Kahhat & Sandra Santa‐Cruz, 2019. "Geospatial Characterization of Material Stock in the Residential Sector of a Latin‐American City," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 280-291, February.
    5. Zhi Cao & Lei Shen & Shuai Zhong & Litao Liu & Hanxiao Kong & Yanzhi Sun, 2018. "A Probabilistic Dynamic Material Flow Analysis Model for Chinese Urban Housing Stock," Journal of Industrial Ecology, Yale University, vol. 22(2), pages 377-391, April.
    6. Tomer Fishman & Heinz Schandl & Hiroki Tanikawa & Paul Walker & Fridolin Krausmann, 2014. "Accounting for the Material Stock of Nations," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 407-420, May.
    7. Niko Heeren & Stefanie Hellweg, 2019. "Tracking Construction Material over Space and Time: Prospective and Geo‐referenced Modeling of Building Stocks and Construction Material Flows," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 253-267, February.
    8. Alessio Miatto & Heinz Schandl & Tomer Fishman & Hiroki Tanikawa, 2017. "Global Patterns and Trends for Non-Metallic Minerals used for Construction," Journal of Industrial Ecology, Yale University, vol. 21(4), pages 924-937, August.
    9. C. Agostinelli, 2002. "Robust stepwise regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(6), pages 825-840.
    10. Huang, Tao & Shi, Feng & Tanikawa, Hiroki & Fei, Jinling & Han, Ji, 2013. "Materials demand and environmental impact of buildings construction and demolition in China based on dynamic material flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 72(C), pages 91-101.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiance Liu & Litao Liu & Xiaojie Liu & Shenggong Li & Gang Liu, 2021. "Building stock dynamics and the impact of construction bubble and bust on employment in China," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1631-1643, December.
    2. Ruirui Zhang & Jing Guo & Dong Yang & Hiroaki Shirakawa & Feng Shi & Hiroki Tanikawa, 2022. "What matters most to the material intensity coefficient of buildings? Random forest‐based evidence from China," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1809-1823, October.
    3. Yang, Jingjing & Deng, Zhang & Guo, Siyue & Chen, Yixing, 2023. "Development of bottom-up model to estimate dynamic carbon emission for city-scale buildings," Applied Energy, Elsevier, vol. 331(C).
    4. Ling Zhang & Qingqing Lu & Zengwei Yuan & Songyan Jiang & Huijun Wu, 2023. "A bottom‐up modeling of metabolism of the residential building system in China toward 2050," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 587-600, April.
    5. Bradley Kloostra & Benjamin Makarchuk & Shoshanna Saxe, 2022. "Bottom‐up estimation of material stocks and flows in Toronto's road network," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 875-890, June.
    6. Zhu, Chen & Li, Xiaodong & Zhu, Weina & Gong, Wei, 2022. "Embodied carbon emissions and mitigation potential in China's building sector: An outlook to 2060," Energy Policy, Elsevier, vol. 170(C).
    7. Francisco Martin del Campo & Simron Jit Singh & Tomer Fishman & Adelle Thomas & Michael Drescher, 2023. "The Bahamas at risk: Material stocks, sea‐level rise, and the implications for development," Journal of Industrial Ecology, Yale University, vol. 27(4), pages 1165-1183, August.
    8. Liang Yuan & Weisheng Lu & Fan Xue & Maosu Li, 2023. "Building feature‐based machine learning regression to quantify urban material stocks: A Hong Kong study," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 336-349, February.
    9. Alessio Miatto & Claudia Sartori & Martina Bianchi & Paolo Borin & Andrea Giordano & Shoshanna Saxe & T.E. Graedel, 2022. "Tracking the material cycle of Italian bricks with the aid of building information modeling," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 609-626, April.
    10. Jan Streeck & Quirin Dammerer & Dominik Wiedenhofer & Fridolin Krausmann, 2021. "The role of socio‐economic material stocks for natural resource use in the United States of America from 1870 to 2100," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1486-1502, December.
    11. Mathieu, Valentin & Roda, Jean-Marc, 2023. "A meta-analysis on wood trade flow modeling concepts," Forest Policy and Economics, Elsevier, vol. 149(C).
    12. Xaysackda Vilaysouk & Savath Saypadith & Seiji Hashimoto, 2022. "Semisupervised machine learning classification framework for material intensity parameters of residential buildings," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 72-87, February.
    13. Stefan Pauliuk & Tomer Fishman & Niko Heeren & Peter Berrill & Qingshi Tu & Paul Wolfram & Edgar G. Hertwich, 2021. "Linking service provision to material cycles: A new framework for studying the resource efficiency–climate change (RECC) nexus," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 260-273, April.
    14. Huo, Tengfei & Xu, Linbo & Liu, Bingsheng & Cai, Weiguang & Feng, Wei, 2022. "China’s commercial building carbon emissions toward 2060: An integrated dynamic emission assessment model," Applied Energy, Elsevier, vol. 325(C).
    15. Ruichang Mao & Yi Bao & Huabo Duan & Gang Liu, 2021. "Global urban subway development, construction material stocks, and embodied carbon emissions," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-11, December.
    16. David Frantz & Franz Schug & Dominik Wiedenhofer & André Baumgart & Doris Virág & Sam Cooper & Camila Gómez-Medina & Fabian Lehmann & Thomas Udelhoven & Sebastian Linden & Patrick Hostert & Helmut Hab, 2023. "Unveiling patterns in human dominated landscapes through mapping the mass of US built structures," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Zhou, Wei & Moncaster, Alice & O'Neill, Eoghan & Reiner, David M. & Wang, Xinke & Guthrie, Peter, 2022. "Modelling future trends of annual embodied energy of urban residential building stock in China," Energy Policy, Elsevier, vol. 165(C).
    18. Augiseau, Vincent & Barles, Sabine, 2017. "Studying construction materials flows and stock: A review," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 153-164.
    19. Daniel Grossegger, 2022. "Material flow analysis study of asphalt in an Austrian municipality," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 996-1009, June.
    20. Cao, Zhi & Shen, Lei & Liu, Litao & Zhao, Jianan & Zhong, Shuai & Kong, Hanxiao & Sun, Yanzhi, 2017. "Estimating the in-use cement stock in China: 1920–2013," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 21-31.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:27:y:2023:i:6:p:1553-1566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.