IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v23y2019i1p253-267.html
   My bibliography  Save this article

Tracking Construction Material over Space and Time: Prospective and Geo‐referenced Modeling of Building Stocks and Construction Material Flows

Author

Listed:
  • Niko Heeren
  • Stefanie Hellweg

Abstract

Construction material plays an increasingly important role in the environmental impacts of buildings. In order to investigate impacts of materials on a building level, we present a bottom‐up building stock model that uses three‐dimensional and geo‐referenced building data to determine volumetric information of material stocks in Swiss residential buildings. We used a probabilistic modeling approach to calculate future material flows for the individual buildings. We investigated six scenarios with different assumptions concerning per‐capita floor area, building stock turnover, and construction material. The Swiss building stock will undergo important structural changes by 2035. While this will lead to a reduced number in new constructions, material flows will increase. Total material inflow decreases by almost half while outflows double. In 2055, the total amount of material in‐ and outflows are almost equal, which represents an important opportunity to close construction material cycles. Total environmental impacts due to production and disposal of construction material remain relatively stable over time. The cumulated impact is slightly reduced for the wood‐based scenario. The scenario with more insulation material leads to slightly higher material‐related emissions. An increase in per‐capita floor area or material turnover will lead to a considerable increase in impacts. The new modeling approach overcomes the limitations of previous bottom‐up building models and allows for investigating building material flows and stocks in space and time. This supports the development of tailored strategies to reduce the material footprint and environmental impacts of buildings and settlements.

Suggested Citation

  • Niko Heeren & Stefanie Hellweg, 2019. "Tracking Construction Material over Space and Time: Prospective and Geo‐referenced Modeling of Building Stocks and Construction Material Flows," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 253-267, February.
  • Handle: RePEc:bla:inecol:v:23:y:2019:i:1:p:253-267
    DOI: 10.1111/jiec.12739
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12739
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12739?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ioannidou, Dimitra & Nikias, Vasileios & Brière, Raphaël & Zerbi, Stefano & Habert, Guillaume, 2015. "Land-cover-based indicator to assess the accessibility of resources used in the construction sector," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 80-91.
    2. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    3. Heeren, Niko & Jakob, Martin & Martius, Gregor & Gross, Nadja & Wallbaum, Holger, 2013. "A component based bottom-up building stock model for comprehensive environmental impact assessment and target control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 45-56.
    4. Francesco Cherubini & Thomas Gasser & Ryan M. Bright & Philippe Ciais & Anders H. Strømman, 2014. "Linearity between temperature peak and bioenergy CO2 emission rates," Nature Climate Change, Nature, vol. 4(11), pages 983-987, November.
    5. Miatto, Alessio & Schandl, Heinz & Tanikawa, Hiroki, 2017. "How important are realistic building lifespan assumptions for material stock and demolition waste accounts?," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 143-154.
    6. Gustavsson, Leif & Haus, Sylvia & Lundblad, Mattias & Lundström, Anders & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le & Wikberg, Per-Erik, 2017. "Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 612-624.
    7. Fritz Kleemann & Jakob Lederer & Helmut Rechberger & Johann Fellner, 2017. "GIS-based Analysis of Vienna's Material Stock in Buildings," Journal of Industrial Ecology, Yale University, vol. 21(2), pages 368-380, April.
    8. Augiseau, Vincent & Barles, Sabine, 2017. "Studying construction materials flows and stock: A review," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 153-164.
    9. F. Cherubini & T. Gasser & R. M. Bright & Philippe Ciais & A. H. Stromman, 2014. "Linearity between temperature peak and bioenergy CO2 emission rates," Post-Print hal-01239786, HAL.
    10. Marloes Caduff & Mark A.J. Huijbregts & Annette Koehler & Hans-Jörg Althaus & Stefanie Hellweg, 2014. "Scaling Relationships in Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 393-406, May.
    11. Dominik Wiedenhofer & Julia K. Steinberger & Nina Eisenmenger & Willi Haas, 2015. "Maintenance and Expansion: Modeling Material Stocks and Flows for Residential Buildings and Transportation Networks in the EU25," Journal of Industrial Ecology, Yale University, vol. 19(4), pages 538-551, August.
    12. Cherubini, Francesco & Fuglestvedt, Jan & Gasser, Thomas & Reisinger, Andy & Cavalett, Otávio & Huijbregts, Mark A.J. & Johansson, Daniel J.A. & Jørgensen, Susanne V. & Raugei, Marco & Schivley, Greg , 2016. "Bridging the gap between impact assessment methods and climate science," Environmental Science & Policy, Elsevier, vol. 64(C), pages 129-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Martin del Campo & Simron Jit Singh & Tomer Fishman & Adelle Thomas & Michael Drescher, 2023. "The Bahamas at risk: Material stocks, sea‐level rise, and the implications for development," Journal of Industrial Ecology, Yale University, vol. 27(4), pages 1165-1183, August.
    2. Bradley Kloostra & Benjamin Makarchuk & Shoshanna Saxe, 2022. "Bottom‐up estimation of material stocks and flows in Toronto's road network," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 875-890, June.
    3. Liang Yuan & Weisheng Lu & Yijie Wu, 2023. "Characterizing the spatiotemporal evolution of building material stock in China's Greater Bay Area: A statistical regression method," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1553-1566, December.
    4. Alessio Miatto & Claudia Sartori & Martina Bianchi & Paolo Borin & Andrea Giordano & Shoshanna Saxe & T.E. Graedel, 2022. "Tracking the material cycle of Italian bricks with the aid of building information modeling," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 609-626, April.
    5. Stefan Pauliuk & Niko Heeren, 2020. "ODYM—An open software framework for studying dynamic material systems: Principles, implementation, and data structures," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 446-458, June.
    6. Carine Lausselet & Johana Paola Forero Urrego & Eirik Resch & Helge Brattebø, 2021. "Temporal analysis of the material flows and embodied greenhouse gas emissions of a neighborhood building stock," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 419-434, April.
    7. Claude Leyder & Michael Klippel & Olin Bartlomé & Niko Heeren & Sarah Kissling & Yutaka Goto & Andrea Frangi, 2021. "Investigations on the Sustainable Resource Use of Swiss Timber," Sustainability, MDPI, vol. 13(3), pages 1-34, January.
    8. Yang, Xining & Hu, Mingming & Tukker, Arnold & Zhang, Chunbo & Huo, Tengfei & Steubing, Bernhard, 2022. "A bottom-up dynamic building stock model for residential energy transition: A case study for the Netherlands," Applied Energy, Elsevier, vol. 306(PA).
    9. Claudio Zandonella Callegher & Gianluca Grazieschi & Eric Wilczynski & Ulrich Filippi Oberegger & Simon Pezzutto, 2023. "Assessment of Building Materials in the European Residential Building Stock: An Analysis at EU27 Level," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    10. Jaime A. Mesa & Carlos Fúquene-Retamoso & Aníbal Maury-Ramírez, 2021. "Life Cycle Assessment on Construction and Demolition Waste: A Systematic Literature Review," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    11. Joris Baars & Mohammad Ali Rajaeifar & Oliver Heidrich, 2022. "Quo vadis MFA? Integrated material flow analysis to support material efficiency," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1487-1503, August.
    12. Jim Hart & Francesco Pomponi, 2020. "More Timber in Construction: Unanswered Questions and Future Challenges," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    13. Yupeng Liu & Jiajia Li & Wei‐Qiang Chen & Lulu Song & Shaoqing Dai, 2022. "Quantifying urban mass gain and loss by a GIS‐based material stocks and flows analysis," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1051-1060, June.
    14. Ruichang Mao & Yi Bao & Huabo Duan & Gang Liu, 2021. "Global urban subway development, construction material stocks, and embodied carbon emissions," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-11, December.
    15. Lachlan Curmi & Kumudu Kaushalya Weththasinghe & Muhammad Atiq Ur Rehman Tariq, 2022. "Global Policy Review on Embodied Flows: Recommendations for Australian Construction Sector," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    16. Jing Guo & Tomer Fishman & Yao Wang & Alessio Miatto & Wendy Wuyts & Licheng Zheng & Heming Wang & Hiroki Tanikawa, 2021. "Urban development and sustainability challenges chronicled by a century of construction material flows and stocks in Tiexi, China," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 162-175, February.
    17. Stefan Pauliuk & Tomer Fishman & Niko Heeren & Peter Berrill & Qingshi Tu & Paul Wolfram & Edgar G. Hertwich, 2021. "Linking service provision to material cycles: A new framework for studying the resource efficiency–climate change (RECC) nexus," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 260-273, April.
    18. Leonora Charlotte Malabi Eberhardt & Anne van Stijn & Liv Kristensen Stranddorf & Morten Birkved & Harpa Birgisdottir, 2021. "Environmental Design Guidelines for Circular Building Components: The Case of the Circular Building Structure," Sustainability, MDPI, vol. 13(10), pages 1-27, May.
    19. Röck, Martin & Baldereschi, Elena & Verellen, Evelien & Passer, Alexander & Sala, Serenella & Allacker, Karen, 2021. "Environmental modelling of building stocks – An integrated review of life cycle-based assessment models to support EU policy making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    20. Weththasinghe, K.K. & Stephan, A. & Francis, V. & Tiwari, P., 2022. "Improving material selection in shopping centres through a parametric life cycle embodied flow and material cost analysis model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    21. Sarah Pamenter & Rupert J. Myers, 2021. "Decarbonizing the cementitious materials cycle: A whole‐systems review of measures to decarbonize the cement supply chain in the UK and European contexts," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 359-376, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yupeng Liu & Jiajia Li & Wei‐Qiang Chen & Lulu Song & Shaoqing Dai, 2022. "Quantifying urban mass gain and loss by a GIS‐based material stocks and flows analysis," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1051-1060, June.
    2. Keisuke Yoshida & Keijiro Okuoka & Alessio Miatto & Liselotte Schebek & Hiroki Tanikawa, 2019. "Estimation of Mining and Landfilling Activities with Associated Overburden through Satellite Data: Germany 2000–2010," Resources, MDPI, vol. 8(3), pages 1-17, July.
    3. Carine Lausselet & Johana Paola Forero Urrego & Eirik Resch & Helge Brattebø, 2021. "Temporal analysis of the material flows and embodied greenhouse gas emissions of a neighborhood building stock," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 419-434, April.
    4. Jakob Lederer & Johann Fellner & Andreas Gassner & Karin Gruhler & Georg Schiller, 2021. "Determining the material intensities of buildings selected by random sampling: A case study from Vienna," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 848-863, August.
    5. Yang, Xining & Hu, Mingming & Tukker, Arnold & Zhang, Chunbo & Huo, Tengfei & Steubing, Bernhard, 2022. "A bottom-up dynamic building stock model for residential energy transition: A case study for the Netherlands," Applied Energy, Elsevier, vol. 306(PA).
    6. Andreas Mayer & Willi Haas & Dominik Wiedenhofer & Fridolin Krausmann & Philip Nuss & Gian Andrea Blengini, 2019. "Measuring Progress towards a Circular Economy: A Monitoring Framework for Economy‐wide Material Loop Closing in the EU28," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 62-76, February.
    7. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    8. Mastrucci, Alessio & Marvuglia, Antonino & Benetto, Enrico & Leopold, Ulrich, 2020. "A spatio-temporal life cycle assessment framework for building renovation scenarios at the urban scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    9. T. Gasser & C. Guivarch & K. Tachiiri & C. D. Jones & P. Ciais, 2015. "Negative emissions physically needed to keep global warming below 2 °C," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    10. Dong Yang & Mengyuan Dang & Lingwen Sun & Feng Han & Feng Shi & Hongbo Zhang & Hongjun Zhang, 2021. "A System Dynamics Model for Urban Residential Building Stock towards Sustainability: The Case of Jinan, China," IJERPH, MDPI, vol. 18(18), pages 1-23, September.
    11. Yupeng Liu & Wei-Qiang Chen & Tao Lin & Lijie Gao, 2019. "How Spatial Analysis Can Help Enhance Material Stocks and Flows Analysis?," Resources, MDPI, vol. 8(1), pages 1-8, March.
    12. Babak Ebrahimi & Leonardo Rosado & Holger Wallbaum, 2022. "Machine learning‐based stocks and flows modeling of road infrastructure," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 44-57, February.
    13. Dombi, Mihály, 2021. "Types of planning systems and effects on construction material volumes: An explanatory analysis in Europe," Land Use Policy, Elsevier, vol. 109(C).
    14. Charles Breton & Pierre Blanchet & Ben Amor & Robert Beauregard & Wen-Shao Chang, 2018. "Assessing the Climate Change Impacts of Biogenic Carbon in Buildings: A Critical Review of Two Main Dynamic Approaches," Sustainability, MDPI, vol. 10(6), pages 1-30, June.
    15. Andreas Gassner & Jakob Lederer & Johann Fellner, 2020. "Material stock development of the transport sector in the city of Vienna," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1364-1378, December.
    16. Huimin Liu & Mengqian Xu & Xuexi Yang & Yan Shi & Min Deng, 2023. "Spatial Layout Assessment of Urban Mining Pilot Bases in China Based on Multi-Source Data Collaboration," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    17. Miatto, Alessio & Schandl, Heinz & Wiedenhofer, Dominik & Krausmann, Fridolin & Tanikawa, Hiroki, 2017. "Modeling material flows and stocks of the road network in the United States 1905–2015," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 168-178.
    18. Unrean, Pornkamol & Lai Fui, Bridgid Chin & Rianawati, Elisabeth & Acda, Menandro, 2018. "Comparative techno-economic assessment and environmental impacts of rice husk-to-fuel conversion technologies," Energy, Elsevier, vol. 151(C), pages 581-593.
    19. Carlos Mesta & Ramzy Kahhat & Sandra Santa‐Cruz, 2019. "Geospatial Characterization of Material Stock in the Residential Sector of a Latin‐American City," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 280-291, February.
    20. Chenling Fu & Yan Zhang & Tianjie Deng & Ichiro Daigo, 2022. "The evolution of material stock research: From exploring to rising to hot studies," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 462-476, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:23:y:2019:i:1:p:253-267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.