IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i18p9520-d632270.html
   My bibliography  Save this article

A System Dynamics Model for Urban Residential Building Stock towards Sustainability: The Case of Jinan, China

Author

Listed:
  • Dong Yang

    (Institute of Science and Technology for Development of Shandong, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250100, China)

  • Mengyuan Dang

    (Institute of Science and Technology for Development of Shandong, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250100, China)

  • Lingwen Sun

    (Institute of Science and Technology for Development of Shandong, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250100, China)

  • Feng Han

    (Institute of Science and Technology for Development of Shandong, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250100, China)

  • Feng Shi

    (Institute of Science and Technology for Development of Shandong, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250100, China)

  • Hongbo Zhang

    (Institute of Science and Technology for Development of Shandong, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250100, China)

  • Hongjun Zhang

    (Energy Research Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250100, China)

Abstract

Resource and environmental issues related to urban building systems have recently become a hot research topic in the field of urban environmental management research. Taking Jinan city as an example, this paper establishes a system dynamic model for an urban residential building stock system. The simulated results show that the urban residential building stock will be 1.99 × 10 8 m 2 in 2050; and the annual total demolition buildings will be at 3.36 × 10 6 m 2 in 2082. Policy measures were developed based on four important action fields such as per capita floor area (PCFA), the building structure proportion of new construction, lifetime of the residential building, and the recycling of the C&D waste. Among these approaches, the set of policy measures focusing on the recycling of C&D waste appears to be more effective in reducing environmental and resource impacts than the other three fields. It is also found that the recycling of brick and concrete waste plays a considerable role in reducing environment and resource impacts due to the development of urban residential building stock with the lapse of time.

Suggested Citation

  • Dong Yang & Mengyuan Dang & Lingwen Sun & Feng Han & Feng Shi & Hongbo Zhang & Hongjun Zhang, 2021. "A System Dynamics Model for Urban Residential Building Stock towards Sustainability: The Case of Jinan, China," IJERPH, MDPI, vol. 18(18), pages 1-23, September.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:18:p:9520-:d:632270
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/18/9520/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/18/9520/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mingming Hu & Ester Van Der Voet & Gjalt Huppes, 2010. "Dynamic Material Flow Analysis for Strategic Construction and Demolition Waste Management in Beijing," Journal of Industrial Ecology, Yale University, vol. 14(3), pages 440-456, June.
    2. Miatto, Alessio & Schandl, Heinz & Tanikawa, Hiroki, 2017. "How important are realistic building lifespan assumptions for material stock and demolition waste accounts?," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 143-154.
    3. Hiroki Tanikawa & Tomer Fishman & Keijiro Okuoka & Kenji Sugimoto, 2015. "The Weight of Society Over Time and Space: A Comprehensive Account of the Construction Material Stock of Japan, 1945–2010," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 778-791, October.
    4. Cao, Zhi & Liu, Gang & Duan, Huabo & Xi, Fengming & Liu, Guiwen & Yang, Wei, 2019. "Unravelling the mystery of Chinese building lifetime: A calibration and verification based on dynamic material flow analysis," Applied Energy, Elsevier, vol. 238(C), pages 442-452.
    5. Augiseau, Vincent & Barles, Sabine, 2017. "Studying construction materials flows and stock: A review," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 153-164.
    6. Håvard Bergsdal & Rolf André Bohne & Helge Brattebø, 2007. "Projection of Construction and Demolition Waste in Norway," Journal of Industrial Ecology, Yale University, vol. 11(3), pages 27-39, July.
    7. Matis, James H. & Kiffe, Thomas R. & van der Werf, Wopke & Costamagna, Alejandro C. & Matis, Timothy I. & Grant, William E., 2009. "Population dynamics models based on cumulative density dependent feedback: A link to the logistic growth curve and a test for symmetry using aphid data," Ecological Modelling, Elsevier, vol. 220(15), pages 1745-1751.
    8. Hossain, Md. Uzzal & Poon, Chi Sun & Lo, Irene M.C. & Cheng, Jack C.P., 2016. "Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 67-77.
    9. Huang, Tao & Shi, Feng & Tanikawa, Hiroki & Fei, Jinling & Han, Ji, 2013. "Materials demand and environmental impact of buildings construction and demolition in China based on dynamic material flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 72(C), pages 91-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. An Huang & Li Tian & Qing Li & Yongfu Li & Jianghao Yu & Yuan Gao & Jing Xia, 2023. "Land-Use Planning Serves as a Critical Tool for Improving Resources and Environmental Carrying Capacity: A Review of Evaluation Methods and Application," IJERPH, MDPI, vol. 20(3), pages 1-20, January.
    2. Zaiyu Fan & Zhen Zhong, 2023. "Spatial Morphological Characteristics and Evolution of Policy-Oriented Urban Agglomerations—Take the Yangtze River Middle Reaches Urban Agglomeration as an Example," Sustainability, MDPI, vol. 15(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keisuke Yoshida & Keijiro Okuoka & Alessio Miatto & Liselotte Schebek & Hiroki Tanikawa, 2019. "Estimation of Mining and Landfilling Activities with Associated Overburden through Satellite Data: Germany 2000–2010," Resources, MDPI, vol. 8(3), pages 1-17, July.
    2. Yupeng Liu & Jiajia Li & Wei‐Qiang Chen & Lulu Song & Shaoqing Dai, 2022. "Quantifying urban mass gain and loss by a GIS‐based material stocks and flows analysis," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1051-1060, June.
    3. Ling Zhang & Qingqing Lu & Zengwei Yuan & Songyan Jiang & Huijun Wu, 2023. "A bottom‐up modeling of metabolism of the residential building system in China toward 2050," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 587-600, April.
    4. Li, Shengping & Rismanchi, Behzad & Aye, Lu, 2022. "A simulation-based bottom-up approach for analysing the evolution of residential buildings’ material stocks and environmental impacts – A case study of Inner Melbourne," Applied Energy, Elsevier, vol. 314(C).
    5. Rafaela Tirado & Adélaïde Aublet & Sylvain Laurenceau & Mathieu Thorel & Mathilde Louërat & Guillaume Habert, 2021. "Component-Based Model for Building Material Stock and Waste-Flow Characterization: A Case in the Île-de-France Region," Sustainability, MDPI, vol. 13(23), pages 1-34, November.
    6. Yupeng Liu & Wei-Qiang Chen & Tao Lin & Lijie Gao, 2019. "How Spatial Analysis Can Help Enhance Material Stocks and Flows Analysis?," Resources, MDPI, vol. 8(1), pages 1-8, March.
    7. Augiseau, Vincent & Barles, Sabine, 2017. "Studying construction materials flows and stock: A review," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 153-164.
    8. Mathieu, Valentin & Roda, Jean-Marc, 2023. "A meta-analysis on wood trade flow modeling concepts," Forest Policy and Economics, Elsevier, vol. 149(C).
    9. Babak Ebrahimi & Leonardo Rosado & Holger Wallbaum, 2022. "Machine learning‐based stocks and flows modeling of road infrastructure," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 44-57, February.
    10. Qiance Liu & Litao Liu & Xiaojie Liu & Shenggong Li & Gang Liu, 2021. "Building stock dynamics and the impact of construction bubble and bust on employment in China," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1631-1643, December.
    11. Ruirui Zhang & Jing Guo & Dong Yang & Hiroaki Shirakawa & Feng Shi & Hiroki Tanikawa, 2022. "What matters most to the material intensity coefficient of buildings? Random forest‐based evidence from China," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1809-1823, October.
    12. Yi Bao & Zhou Huang & Han Wang & Ganmin Yin & Xiao Zhou & Yong Gao, 2023. "High‐resolution quantification of building stock using multi‐source remote sensing imagery and deep learning," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 350-361, February.
    13. Benjamin Sprecher & Teun Johannes Verhagen & Marijn Louise Sauer & Michel Baars & John Heintz & Tomer Fishman, 2022. "Material intensity database for the Dutch building stock: Towards Big Data in material stock analysis," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 272-280, February.
    14. Yang, Xining & Hu, Mingming & Tukker, Arnold & Zhang, Chunbo & Huo, Tengfei & Steubing, Bernhard, 2022. "A bottom-up dynamic building stock model for residential energy transition: A case study for the Netherlands," Applied Energy, Elsevier, vol. 306(PA).
    15. Olaya, Yris & Vásquez, Felipe & Müller, Daniel B., 2017. "Dwelling stock dynamics for addressing housing deficit," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 187-199.
    16. Zhou, Wei & Moncaster, Alice & O'Neill, Eoghan & Reiner, David M. & Wang, Xinke & Guthrie, Peter, 2022. "Modelling future trends of annual embodied energy of urban residential building stock in China," Energy Policy, Elsevier, vol. 165(C).
    17. Miatto, Alessio & Schandl, Heinz & Wiedenhofer, Dominik & Krausmann, Fridolin & Tanikawa, Hiroki, 2017. "Modeling material flows and stocks of the road network in the United States 1905–2015," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 168-178.
    18. Hadi Arbabi & Maud Lanau & Xinyi Li & Gregory Meyers & Menglin Dai & Martin Mayfield & Danielle Densley Tingley, 2022. "A scalable data collection, characterization, and accounting framework for urban material stocks," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 58-71, February.
    19. Wang, Tao & Tian, Xin & Hashimoto, Seiji & Tanikawa, Hiroki, 2015. "Concrete transformation of buildings in China and implications for the steel cycle," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 205-215.
    20. Chenling Fu & Yan Zhang & Tianjie Deng & Ichiro Daigo, 2022. "The evolution of material stock research: From exploring to rising to hot studies," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 462-476, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:18:p:9520-:d:632270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.