IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v25y2021i6p1631-1643.html
   My bibliography  Save this article

Building stock dynamics and the impact of construction bubble and bust on employment in China

Author

Listed:
  • Qiance Liu
  • Litao Liu
  • Xiaojie Liu
  • Shenggong Li
  • Gang Liu

Abstract

The rapid urbanization and building boom in China in the past decades provided not only massive residential and nonresidential floor space, but also millions of jobs especially for migrants from rural areas. However, such high‐speed growth of building stocks is not expected to continue forever and its dynamics, especially declining, may affect the job market of the construction sector and further China's social stability. Here, we extended a dynamic material flow analysis (dMFA) model that characterized the building stocks and flows to forecast the province‐level direct labor demand in construction, installation, and decoration in mainland China from 1950 to 2050. We show that as China's per capita building stocks start to saturate in the next decades, building inflow will decrease with a speed of 2.6–2.7 billion m2/year, corresponding to a decrease of direct construction employment by 2–3 million by 2050. The flow of migrant workers from Central South and Southwestern China to construction in the Southeastern coast of China will remain until 2050. Our results exemplify the usefulness of dMFA for labor demand forecasting and call for proper governmental plans and policies in advance to train migrant workers for new labor markets and potential re‐employment in face of the construction bubble and bust.

Suggested Citation

  • Qiance Liu & Litao Liu & Xiaojie Liu & Shenggong Li & Gang Liu, 2021. "Building stock dynamics and the impact of construction bubble and bust on employment in China," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1631-1643, December.
  • Handle: RePEc:bla:inecol:v:25:y:2021:i:6:p:1631-1643
    DOI: 10.1111/jiec.13182
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13182
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhi Cao & Rupert J. Myers & Richard C. Lupton & Huabo Duan & Romain Sacchi & Nan Zhou & T. Reed Miller & Jonathan M. Cullen & Quansheng Ge & Gang Liu, 2020. "The sponge effect and carbon emission mitigation potentials of the global cement cycle," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Andrei O. J. Kwok & Motoki Watabe & Pervaiz K. Ahmed, 2021. "Augmenting Employee Trust and Cooperation," Springer Books, Springer, number 978-981-16-2343-1, July.
    3. James Wong & Albert Chan & Y. H. Chiang, 2005. "Time series forecasts of the construction labour market in Hong Kong: the Box-Jenkins approach," Construction Management and Economics, Taylor & Francis Journals, vol. 23(9), pages 979-991.
    4. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Geng, Yong & Sarkis, Joseph, 2017. "Material flow analysis of lithium in China," Resources Policy, Elsevier, vol. 51(C), pages 100-106.
    5. W. R. Dill & D. P. Gaver & W. L. Weber, 1966. "Models and Modelling for Manpower Planning," Management Science, INFORMS, vol. 13(4), pages 142-167, December.
    6. Chen, Liming & Felipe, Jesus & Kam, Andrew J.Y. & Mehta, Aashish, 2021. "Is employment globalizing?," Structural Change and Economic Dynamics, Elsevier, vol. 56(C), pages 74-92.
    7. Hong, Lixuan & Zhou, Nan & Feng, Wei & Khanna, Nina & Fridley, David & Zhao, Yongqiang & Sandholt, Kaare, 2016. "Building stock dynamics and its impacts on materials and energy demand in China," Energy Policy, Elsevier, vol. 94(C), pages 47-55.
    8. Gang Liu & Colton E. Bangs & Daniel B. Müller, 2013. "Stock dynamics and emission pathways of the global aluminium cycle," Nature Climate Change, Nature, vol. 3(4), pages 338-342, April.
    9. Cao, Zhi & Liu, Gang & Duan, Huabo & Xi, Fengming & Liu, Guiwen & Yang, Wei, 2019. "Unravelling the mystery of Chinese building lifetime: A calibration and verification based on dynamic material flow analysis," Applied Energy, Elsevier, vol. 238(C), pages 442-452.
    10. Stefan Jestl & Robert Stehrer, 2021. "EU Employment Dynamics: The Pandemic Years and Beyond," wiiw Research Reports 457, The Vienna Institute for International Economic Studies, wiiw.
    11. Black, Stanley W & Kelejian, H H, 1970. "A Macro Model of the U. S. Labor Market," Econometrica, Econometric Society, vol. 38(5), pages 712-741, September.
    12. Huang, Tao & Shi, Feng & Tanikawa, Hiroki & Fei, Jinling & Han, Ji, 2013. "Materials demand and environmental impact of buildings construction and demolition in China based on dynamic material flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 72(C), pages 91-101.
    13. Zhi Cao & Lei Shen & Shuai Zhong & Litao Liu & Hanxiao Kong & Yanzhi Sun, 2018. "A Probabilistic Dynamic Material Flow Analysis Model for Chinese Urban Housing Stock," Journal of Industrial Ecology, Yale University, vol. 22(2), pages 377-391, April.
    14. Ryan Fan & S. Thomas Ng & James Wong, 2010. "Reliability of the Box-Jenkins model for forecasting construction demand covering times of economic austerity," Construction Management and Economics, Taylor & Francis Journals, vol. 28(3), pages 241-254.
    15. Olaya, Yris & Vásquez, Felipe & Müller, Daniel B., 2017. "Dwelling stock dynamics for addressing housing deficit," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 187-199.
    16. Simas, Moana & Pacca, Sergio, 2014. "Assessing employment in renewable energy technologies: A case study for wind power in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 83-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ling Zhang & Qingqing Lu & Zengwei Yuan & Songyan Jiang & Huijun Wu, 2023. "A bottom‐up modeling of metabolism of the residential building system in China toward 2050," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 587-600, April.
    2. Raine Isaksson & Max Rosvall & Maximilian Espuny & Thais Vieira Nunhes & Otávio José de Oliveira, 2022. "How Is Building Sustainability Understood?—A Study of Research Papers and Sustainability Reports," Sustainability, MDPI, vol. 14(19), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ling Zhang & Qingqing Lu & Zengwei Yuan & Songyan Jiang & Huijun Wu, 2023. "A bottom‐up modeling of metabolism of the residential building system in China toward 2050," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 587-600, April.
    2. Ruirui Zhang & Jing Guo & Dong Yang & Hiroaki Shirakawa & Feng Shi & Hiroki Tanikawa, 2022. "What matters most to the material intensity coefficient of buildings? Random forest‐based evidence from China," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1809-1823, October.
    3. Yang, Jingjing & Deng, Zhang & Guo, Siyue & Chen, Yixing, 2023. "Development of bottom-up model to estimate dynamic carbon emission for city-scale buildings," Applied Energy, Elsevier, vol. 331(C).
    4. Liang Yuan & Weisheng Lu & Yijie Wu, 2023. "Characterizing the spatiotemporal evolution of building material stock in China's Greater Bay Area: A statistical regression method," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1553-1566, December.
    5. Zhu, Chen & Li, Xiaodong & Zhu, Weina & Gong, Wei, 2022. "Embodied carbon emissions and mitigation potential in China's building sector: An outlook to 2060," Energy Policy, Elsevier, vol. 170(C).
    6. Xiaoyang Zhong & Mingming Hu & Sebastiaan Deetman & Bernhard Steubing & Hai Xiang Lin & Glenn Aguilar Hernandez & Carina Harpprecht & Chunbo Zhang & Arnold Tukker & Paul Behrens, 2021. "Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Dong Yang & Mengyuan Dang & Lingwen Sun & Feng Han & Feng Shi & Hongbo Zhang & Hongjun Zhang, 2021. "A System Dynamics Model for Urban Residential Building Stock towards Sustainability: The Case of Jinan, China," IJERPH, MDPI, vol. 18(18), pages 1-23, September.
    8. Tomer Fishman & Niko Heeren & Stefan Pauliuk & Peter Berrill & Qingshi Tu & Paul Wolfram & Edgar G. Hertwich, 2021. "A comprehensive set of global scenarios of housing, mobility, and material efficiency for material cycles and energy systems modeling," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 305-320, April.
    9. Huo, Tengfei & Xu, Linbo & Liu, Bingsheng & Cai, Weiguang & Feng, Wei, 2022. "China’s commercial building carbon emissions toward 2060: An integrated dynamic emission assessment model," Applied Energy, Elsevier, vol. 325(C).
    10. Yue, Qiang & Chai, Xicui & Zhao, Feng & He, Junhao & Li, Yun & Wang, Heming, 2023. "Analysis of iron in-use stocks: Evidence from the provincial and municipal levels in China," Resources Policy, Elsevier, vol. 80(C).
    11. Zhou, Wei & Moncaster, Alice & O'Neill, Eoghan & Reiner, David M. & Wang, Xinke & Guthrie, Peter, 2022. "Modelling future trends of annual embodied energy of urban residential building stock in China," Energy Policy, Elsevier, vol. 165(C).
    12. Li, Shupeng & Wang, Zhe & Yue, Qiang & Zhang, Tingan, 2022. "Analysis of the quantity and spatial characterization of aluminum in-use stocks in China," Resources Policy, Elsevier, vol. 79(C).
    13. Zhou, Wei & O'Neill, Eoghan & Moncaster, Alice & Reiner, David M. & Guthrie, Peter, 2020. "Forecasting urban residential stock turnover dynamics using system dynamics and Bayesian model averaging," Applied Energy, Elsevier, vol. 275(C).
    14. Yang, Xue & Zhang, Chao & Li, Xinyi & Cao, Zhi & Wang, Peng & Wang, Heming & Liu, Gang & Xia, Ziqian & Zhu, Dajian & Chen, Wei-Qiang, 2024. "Multinational dynamic steel cycle analysis reveals sequential decoupling between material use and economic growth," Ecological Economics, Elsevier, vol. 217(C).
    15. Jing Guo & Tomer Fishman & Yao Wang & Alessio Miatto & Wendy Wuyts & Licheng Zheng & Heming Wang & Hiroki Tanikawa, 2021. "Urban development and sustainability challenges chronicled by a century of construction material flows and stocks in Tiexi, China," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 162-175, February.
    16. Luigi Aldieri & Jonas Grafström & Kristoffer Sundström & Concetto Paolo Vinci, 2019. "Wind Power and Job Creation," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    17. Bohlmann, H.R. & Horridge, J.M. & Inglesi-Lotz, R. & Roos, E.L. & Stander, L., 2019. "Regional employment and economic growth effects of South Africa’s transition to low-carbon energy supply mix," Energy Policy, Elsevier, vol. 128(C), pages 830-837.
    18. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    19. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    20. Costantini, Valeria & Crespi, Francesco & Paglialunga, Elena, 2018. "The employment impact of private and public actions for energy efficiency: Evidence from European industries," Energy Policy, Elsevier, vol. 119(C), pages 250-267.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:25:y:2021:i:6:p:1631-1643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.