IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i6d10.1007_s10668-023-03178-0.html
   My bibliography  Save this article

The impact of innovative technologies in construction activities on concrete debris recycling in China: a system dynamics-based analysis

Author

Listed:
  • Ning Zhang

    (Leibniz Institute of Ecological Urban and Regional Development (IOER))

  • Aziz Kemal Konyalıoğlu

    (Istanbul Technical University
    Hunter Center for Entrepreneurship, Strathclyde Business School)

  • Huabo Duan

    (Huazhong University of Science and Technology (HUST))

  • Haibo Feng

    (The University of British Columbia)

  • Huanyu Li

    (Shanghai Jiao Tong University
    Technische Universität Dresden)

Abstract

As construction activities become more intensive in developing countries, increasing improperly managed construction and demolition waste (CDW) brings serious environmental impacts. Recycling is a beneficial way to dispose of CDW that reduces environmental impact and brings economic benefits, especially for concrete. China is the country that generates the most CDW in the world, but its domestic recycling rate is much lower than that of developed countries. While the efficient technologies in developed regions have helped them to achieve a well-established recycling industry, whether these innovative technologies can be used to improve the concrete debris recycling targets in developing regions is unclear. This study examines whether innovations currently widely used in construction activities and materials can have a positive effect on the recycling of End-of-Life concrete materials in China. Results from modeling system dynamics imply that the introduction of innovative technologies in the recycling system of concrete debris can probably contribute to CO2 reduction (3.6% reduction) and economic benefits (2.6 times increase, but mainly from landfill charges and fines) from 2022 to 2030. Prefabrication and 3D printing significantly impact recycled concrete production and CDW recycling, and they are recommended as a priority for promotion. In contrast, carbonation is not suggested for application due to its minor role. Nevertheless, since the market share of innovative technologies and the basic CDW recycling rates are currently low in China, fluctuations in their usage are hardly to have a substantial positive impact. We suggest that financial support from the government is needed for upcycling by recyclers and technology providers to improve the base recycling rate in order for innovative technologies to make an effective contribution to the sustainable construction industry, creating a win–win situation for both the economy and the environment of the recycling system.

Suggested Citation

  • Ning Zhang & Aziz Kemal Konyalıoğlu & Huabo Duan & Haibo Feng & Huanyu Li, 2024. "The impact of innovative technologies in construction activities on concrete debris recycling in China: a system dynamics-based analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 14039-14064, June.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:6:d:10.1007_s10668-023-03178-0
    DOI: 10.1007/s10668-023-03178-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03178-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03178-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marzouk, Mohamed & Azab, Shimaa, 2014. "Environmental and economic impact assessment of construction and demolition waste disposal using system dynamics," Resources, Conservation & Recycling, Elsevier, vol. 82(C), pages 41-49.
    2. Yuan, Hongping & Wang, Jiayuan, 2014. "A system dynamics model for determining the waste disposal charging fee in construction," European Journal of Operational Research, Elsevier, vol. 237(3), pages 988-996.
    3. Jiyoung Park & Jungwon Yoon & Kwang-Hyun Kim, 2017. "Critical Review of the Material Criteria of Building Sustainability Assessment Tools," Sustainability, MDPI, vol. 9(2), pages 1-24, January.
    4. Lai Sheung Au & Seungjun Ahn & Tae Wan Kim, 2018. "System Dynamic Analysis of Impacts of Government Charges on Disposal of Construction and Demolition Waste: A Hong Kong Case Study," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    5. Zhao, W. & Ren, H. & Rotter, V.S., 2011. "A system dynamics model for evaluating the alternative of type in construction and demolition waste recycling center – The case of Chongqing, China," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 933-944.
    6. Xu, Gang & Zhou, Zhengzi & Jiao, Limin & Zhao, Rui, 2020. "Compact Urban Form and Expansion Pattern Slow Down the Decline in Urban Densities: A Global Perspective," Land Use Policy, Elsevier, vol. 94(C).
    7. Cao, Zhi & Liu, Gang & Duan, Huabo & Xi, Fengming & Liu, Guiwen & Yang, Wei, 2019. "Unravelling the mystery of Chinese building lifetime: A calibration and verification based on dynamic material flow analysis," Applied Energy, Elsevier, vol. 238(C), pages 442-452.
    8. Shu Zhang & Wenying Chen, 2022. "Assessing the energy transition in China towards carbon neutrality with a probabilistic framework," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Mingers, John & White, Leroy, 2010. "A review of the recent contribution of systems thinking to operational research and management science," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1147-1161, December.
    10. Georg Schiller & Karin Gruhler & Regine Ortlepp, 2017. "Continuous Material Flow Analysis Approach for Bulk Nonmetallic Mineral Building Materials Applied to the German Building Sector," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 673-688, June.
    11. Md. Aslam Hossain & Altynay Zhumabekova & Suvash Chandra Paul & Jong Ryeol Kim, 2020. "A Review of 3D Printing in Construction and its Impact on the Labor Market," Sustainability, MDPI, vol. 12(20), pages 1-21, October.
    12. Stelladriana Volpe & Valentino Sangiorgio & Andrea Petrella & Armando Coppola & Michele Notarnicola & Francesco Fiorito, 2021. "Building Envelope Prefabricated with 3D Printing Technology," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    13. Elżbieta Stanaszek-Tomal, 2020. "Bacterial Concrete as a Sustainable Building Material?," Sustainability, MDPI, vol. 12(2), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parvin Berenjkar & Yu Yan Li & Qiuyan Yuan, 2021. "The application of system dynamics in different practices of a waste management system," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 15695-15724, November.
    2. Zhikun Ding & Wenyan Gong & Shenghan Li & Zezhou Wu, 2018. "System Dynamics versus Agent-Based Modeling: A Review of Complexity Simulation in Construction Waste Management," Sustainability, MDPI, vol. 10(7), pages 1-13, July.
    3. Qidan Hu & Ying Peng & Chunxiang Guo & Dong Cai & Peiyang Su, 2019. "Dynamic Incentive Mechanism Design for Recycling Construction and Demolition Waste under Dual Information Asymmetry," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    4. Finn G. Feldmann, 2022. "Towards Lean Automation in Construction—Exploring Barriers to Implementing Automation in Prefabrication," Sustainability, MDPI, vol. 14(19), pages 1-22, October.
    5. Micky A. Babalola, 2019. "A System Dynamics-Based Approach to Help Understand the Role of Food and Biodegradable Waste Management in Respect of Municipal Waste Management Systems," Sustainability, MDPI, vol. 11(12), pages 1-20, June.
    6. Wijayasundara, Mayuri & Mendis, Priyan & Zhang, Lihai & Sofi, Massoud, 2016. "Financial assessment of manufacturing recycled aggregate concrete in ready-mix concrete plants," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 187-201.
    7. Zezhou Wu & Kaijie Yang & Xiaofan Lai & Maxwell Fordjour Antwi-Afari, 2020. "A Scientometric Review of System Dynamics Applications in Construction Management Research," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    8. Dace, Elina & Bazbauers, Gatis & Berzina, Alise & Davidsen, Pål I., 2014. "System dynamics model for analyzing effects of eco-design policy on packaging waste management system," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 175-190.
    9. Noushin Islam & Malindu Sandanayake & Shobha Muthukumaran & Dimuth Navaratna, 2024. "Review on Sustainable Construction and Demolition Waste Management—Challenges and Research Prospects," Sustainability, MDPI, vol. 16(8), pages 1-30, April.
    10. Farel, Romain & Yannou, Bernard & Ghaffari, Asma & Leroy, Yann, 2013. "A cost and benefit analysis of future end-of-life vehicle glazing recycling in France: A systematic approach," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 54-65.
    11. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    12. Smith, Chris M. & Shaw, Duncan, 2019. "The characteristics of problem structuring methods: A literature review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 403-416.
    13. Trutnevyte, Evelina & Stauffacher, Michael & Scholz, Roland W., 2012. "Linking stakeholder visions with resource allocation scenarios and multi-criteria assessment," European Journal of Operational Research, Elsevier, vol. 219(3), pages 762-772.
    14. Bongsuk Sung & Hong Chen & Sang Do Park, 2024. "Who Drives Policy Discourse of China’s Energy Transition: Considering Time Series Perspective, Network and Core-Peripheral Analysis," SAGE Open, , vol. 14(2), pages 21582440241, May.
    15. Abd Alla, Sara & Bianco, Vincenzo & Tagliafico, Luca A. & Scarpa, Federico, 2020. "Life-cycle approach to the estimation of energy efficiency measures in the buildings sector," Applied Energy, Elsevier, vol. 264(C).
    16. Nam C. Nguyen & Ockie J. H. Bosch, 2014. "The Art of Interconnected Thinking: Starting with the Young," Challenges, MDPI, vol. 5(2), pages 1-21, August.
    17. Miguel Afonso Sellitto & Guilherme Schreiber Pereira & Rafael Marques & Daniel Pacheco Lacerda, 2018. "Systemic Understanding of Coopetitive Behaviour in a Latin American Technological Park," Systemic Practice and Action Research, Springer, vol. 31(5), pages 479-494, October.
    18. Robert Saputra & Tomáš Havlíček, 2024. "Strengthening Rural Governance for Rural Development Through Collaborative Strategy: the Application of Soft System Methodology and Textual Network Analysis," Systemic Practice and Action Research, Springer, vol. 37(6), pages 1175-1193, December.
    19. Ya Li & Zhichang Zhu & Catherine M. Gerard, 2012. "Learning from Conflict Resolution: An Opportunity to Systems Thinking," Systems Research and Behavioral Science, Wiley Blackwell, vol. 29(2), pages 209-220, March.
    20. Lehtonen, Olli & Tykkyläinen, Markku, 2014. "Delphi path simulator for unveiling development opportunities in the forest industries by contrasting forest management practices — The case of North Karelia," Technological Forecasting and Social Change, Elsevier, vol. 84(C), pages 171-185.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:6:d:10.1007_s10668-023-03178-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.