IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v55y2011i11p933-944.html

A system dynamics model for evaluating the alternative of type in construction and demolition waste recycling center – The case of Chongqing, China

Author

Listed:
  • Zhao, W.
  • Ren, H.
  • Rotter, V.S.

Abstract

This paper presents a system dynamics computer model to evaluate alternative type of recycling center under different policy and economy environments through comparison on the economic feasibility of recycling centers and ratio of savings to costs in C&D waste management. A case study for the City of Chongqing, China is selected. Simulated results show three key factors can contribute to the economic feasibility of recycling and the ratio of savings to costs in C&D waste management: (a) profit; (b) unit recycling cost; (c) extra revenue from location advantage (It was assumed that the mobile centers can attain extra revenue from the location advantage compared with fixed recycling centers). The sensitive analysis and comparison on ratios between public and private sector indicate that to achieve the optimum ratio of savings to costs, design of recycling centers and selection of governmental instruments are determined by the priority list: (1) low extra revenue from location advantage; (2) low profit; (3) low unit recycling cost. Meanwhile, the fluctuation of the three factors must be prior to achieve economic feasibility of corresponding recycling centers.

Suggested Citation

  • Zhao, W. & Ren, H. & Rotter, V.S., 2011. "A system dynamics model for evaluating the alternative of type in construction and demolition waste recycling center – The case of Chongqing, China," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 933-944.
  • Handle: RePEc:eee:recore:v:55:y:2011:i:11:p:933-944
    DOI: 10.1016/j.resconrec.2011.04.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092134491100067X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2011.04.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Karavezyris, Vassilios & Timpe, Klaus-Peter & Marzi, Ruth, 2002. "Application of system dynamics and fuzzy logic to forecasting of municipal solid waste," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 60(3), pages 149-158.
    2. Duran, Xavier & Lenihan, Helena & O’Regan, Bernadette, 2006. "A model for assessing the economic viability of construction and demolition waste recycling—the case of Ireland," Resources, Conservation & Recycling, Elsevier, vol. 46(3), pages 302-320.
    3. Zhao, W. & Leeftink, R.B. & Rotter, V.S., 2010. "Evaluation of the economic feasibility for the recycling of construction and demolition waste in China—The case of Chongqing," Resources, Conservation & Recycling, Elsevier, vol. 54(6), pages 377-389.
    4. Hsiao, T. Y. & Huang, Y. T. & Yu, Y. H. & Wernick, I. K., 2002. "Modeling materials flow of waste concrete from construction and demolition wastes in Taiwan," Resources Policy, Elsevier, vol. 28(1-2), pages 39-47.
    5. Georgiadis, Patroklos & Vlachos, Dimitrios, 2004. "The effect of environmental parameters on product recovery," European Journal of Operational Research, Elsevier, vol. 157(2), pages 449-464, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farel, Romain & Yannou, Bernard & Ghaffari, Asma & Leroy, Yann, 2013. "A cost and benefit analysis of future end-of-life vehicle glazing recycling in France: A systematic approach," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 54-65.
    2. Ning Zhang & Aziz Kemal Konyalıoğlu & Huabo Duan & Haibo Feng & Huanyu Li, 2024. "The impact of innovative technologies in construction activities on concrete debris recycling in China: a system dynamics-based analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 14039-14064, June.
    3. Wijayasundara, Mayuri & Mendis, Priyan & Zhang, Lihai & Sofi, Massoud, 2016. "Financial assessment of manufacturing recycled aggregate concrete in ready-mix concrete plants," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 187-201.
    4. Tao, Meiyun & Zhao, Youzhu & Jiang, Qiuxiang & Wang, Zilong & Li, Baohan, 2025. "Study on the coupled coordination of water resources consumption and economic development in Heilongjiang province under different scenarios based on SD model," Agricultural Water Management, Elsevier, vol. 315(C).
    5. Parvin Berenjkar & Yu Yan Li & Qiuyan Yuan, 2021. "The application of system dynamics in different practices of a waste management system," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 15695-15724, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dace, Elina & Bazbauers, Gatis & Berzina, Alise & Davidsen, Pål I., 2014. "System dynamics model for analyzing effects of eco-design policy on packaging waste management system," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 175-190.
    2. Zhao, W. & Leeftink, R.B. & Rotter, V.S., 2010. "Evaluation of the economic feasibility for the recycling of construction and demolition waste in China—The case of Chongqing," Resources, Conservation & Recycling, Elsevier, vol. 54(6), pages 377-389.
    3. Jin, Ruoyu & Li, Bo & Zhou, Tongyu & Wanatowski, Dariusz & Piroozfar, Poorang, 2017. "An empirical study of perceptions towards construction and demolition waste recycling and reuse in China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 86-98.
    4. Sy, Charlle, 2017. "A policy development model for reducing bullwhips in hybrid production-distribution systems," International Journal of Production Economics, Elsevier, vol. 190(C), pages 67-79.
    5. Farel, Romain & Yannou, Bernard & Ghaffari, Asma & Leroy, Yann, 2013. "A cost and benefit analysis of future end-of-life vehicle glazing recycling in France: A systematic approach," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 54-65.
    6. Zhang, Abraham & Wang, Jason X. & Farooque, Muhammad & Wang, Yulan & Choi, Tsan-Ming, 2021. "Multi-dimensional circular supply chain management: A comparative review of the state-of-the-art practices and research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    7. Asif, Farazee M.A. & Rashid, Amir & Bianchi, Carmine & Nicolescu, Cornel M., 2015. "System dynamics models for decision making in product multiple lifecycles," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 20-33.
    8. Das, Debabrata & Dutta, Pankaj, 2022. "Product return management through promotional offers: The role of consumers’ loss aversion," International Journal of Production Economics, Elsevier, vol. 251(C).
    9. Duan, Wenqi & Khurshid, Adnan & Nazir, Naila & Khan, Khalid & Calin, Adrian Cantemir, 2022. "From gray to green: Energy crises and the role of CPEC," Renewable Energy, Elsevier, vol. 190(C), pages 188-207.
    10. Wang Xiao-jun & Zhang Jian-yun & Wang Jian-hua & He Rui-min & Amgad ElMahdi & Liu Jin-hua & Wang Xin-gong & David King & Shamsuddin Shahid, 2014. "Climate change and water resources management in Tuwei river basin of Northwest China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(1), pages 107-120, January.
    11. Xu, Lulin & Li, Zhongwu, 2024. "The impact of “Internet plus” enterprises on municipal solid waste classification and social welfare: An example from China," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    12. Georgiadis, Patroklos & Athanasiou, Efstratios, 2010. "The impact of two-product joint lifecycles on capacity planning of remanufacturing networks," European Journal of Operational Research, Elsevier, vol. 202(2), pages 420-433, April.
    13. Gi-Wook Cha & Young-Chan Kim & Hyeun Jun Moon & Won-Hwa Hong, 2017. "The Effects of Data Collection Method and Monitoring of Workers’ Behavior on the Generation of Demolition Waste," IJERPH, MDPI, vol. 14(10), pages 1-14, October.
    14. Florian Kapmeier & Paulo Gonçalves, 2018. "Wasted paradise? Policies for Small Island States to manage tourism‐driven growth while controlling waste generation: the case of the Maldives," System Dynamics Review, System Dynamics Society, vol. 34(1-2), pages 172-221, January.
    15. Gurinder Kaur & Ronald Kander, 2025. "System Dynamics for Manufacturing: Supply Chain Simulation of Hemp-Reinforced Polymer Composite Manufacturing for Sustainability," Sustainability, MDPI, vol. 17(2), pages 1-23, January.
    16. Dongchen Han & Mohsen Kalantari & Abbas Rajabifard, 2021. "Building Information Modeling (BIM) for Construction and Demolition Waste Management in Australia: A Research Agenda," Sustainability, MDPI, vol. 13(23), pages 1-22, November.
    17. Tsolakis, Naoum & Zissis, Dimitris & Tjahjono, Benny, 2023. "Scrutinising the interplay between governance and resilience in supply chain management: A systems thinking framework," European Management Journal, Elsevier, vol. 41(1), pages 164-180.
    18. Karina Cecilia Arredondo-Soto & Alejandro Jiménez-Zaragoza & Marco Augusto Miranda-Ackerman & Julio Blanco-Fernández & Alejandra García-Lechuga & Guadalupe Hernández-Escobedo & Jorge Luis García-Alcar, 2022. "Design and Repair Strategies Based on Product–Service System and Remanufacturing for Value Preservation," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    19. Luara Batalha Vieira & Vito Francioso & Bruna Bueno Mariani & Carlos Moro & Josiane Dantas Viana Barbosa & Larissa da Silva Paes Cardoso & Cleber Marcos Ribeiro Dias & Mirian Velay-Lizancos, 2023. "Valorization of Marble Waste Powder as a Replacement for Limestone in Clinker Production: Technical, Environmental and Economic Evaluation," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    20. Gamberini, Rita & Gebennini, Elisa & Manzini, Riccardo & Ziveri, Andrea, 2010. "On the integration of planning and environmental impact assessment for a WEEE transportation network—A case study," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 937-951.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:55:y:2011:i:11:p:933-944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.