IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v11y2007i3p27-39.html
   My bibliography  Save this article

Projection of Construction and Demolition Waste in Norway

Author

Listed:
  • Håvard Bergsdal
  • Rolf André Bohne
  • Helge Brattebø

Abstract

Current waste generation from the construction and demolition industry (C&D industry) in Norway is about 1.25 million tonnes per year. This article presents a procedure for projection of future waste amounts by estimating the activity level in the C&D industry, determining specific waste generation factors related to this activity, and finally calculating projections on flows of waste materials leaving the stocks in use and moving into the waste management system. This is done through a simple model of stocks and flows of buildings and materials. Monte Carlo simulation is used in the calculations to account for uncertainties related to the input parameters in order to make the results more robust. The results show a significant increase in C&D waste for the years to come, especially for the large fractions of concrete/bricks and wood. These projections can be a valuable source of information to predict the future need for waste treatment capacity, the dominant waste fractions, and the challenges in future waste handling systems. The proposed method is used in a forthcoming companion article for eco‐efficiency modeling within an evaluation of a C&D waste system.

Suggested Citation

  • Håvard Bergsdal & Rolf André Bohne & Helge Brattebø, 2007. "Projection of Construction and Demolition Waste in Norway," Journal of Industrial Ecology, Yale University, vol. 11(3), pages 27-39, July.
  • Handle: RePEc:bla:inecol:v:11:y:2007:i:3:p:27-39
    DOI: 10.1162/jiec.2007.1149
    as

    Download full text from publisher

    File URL: https://doi.org/10.1162/jiec.2007.1149
    Download Restriction: no

    File URL: https://libkey.io/10.1162/jiec.2007.1149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Rong-Hui & Lin, Yuanhsu & Tseng, Ming-Lang, 2015. "Multicriteria analysis of sustainable development indicators in the construction minerals industry in China," Resources Policy, Elsevier, vol. 46(P1), pages 123-133.
    2. Bakshan, Amal & Srour, Issam & Chehab, Ghassan & El-Fadel, Mutasem, 2015. "A field based methodology for estimating waste generation rates at various stages of construction projects," Resources, Conservation & Recycling, Elsevier, vol. 100(C), pages 70-80.
    3. Lai Sheung Au & Seungjun Ahn & Tae Wan Kim, 2018. "System Dynamic Analysis of Impacts of Government Charges on Disposal of Construction and Demolition Waste: A Hong Kong Case Study," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    4. Vivian Wing-Yan Tam & Weisheng Lu, 2016. "Construction Waste Management Profiles, Practices, and Performance: A Cross-Jurisdictional Analysis in Four Countries," Sustainability, MDPI, vol. 8(2), pages 1-16, February.
    5. Luiz Maurício Maués & Norma Beltrão & Isabela Silva, 2021. "GHG Emissions Assessment of Civil Construction Waste Disposal and Transportation Process in the Eastern Amazon," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    6. Alexander Koutamanis & Boukje Van Reijn & Ellen Van Bueren, 2017. "Anticipating urban mining," ERES eres2017_70, European Real Estate Society (ERES).
    7. David N. Bristow & Eugene A. Mohareb, 2020. "From the urban metabolism to the urban immune system," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 300-312, April.
    8. Lilliana Abarca-Guerrero & Susi Lobo-Ugalde & Nicole Méndez-Carpio & Rosibel Rodríguez-Leandro & Victoria Rudin-Vega, 2022. "Zero Waste Systems: Barriers and Measures to Recycling of Construction and Demolition Waste," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    9. Young-Chan Kim & Yuan-Long Zhang & Won-Jun Park & Gi-Wook Cha & Jung-Wan Kim & Won-Hwa Hong, 2019. "Analysis of Waste Generation Characteristics during New Apartment Construction—Considering the Construction Phase," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    10. Chung, Shan Shan, 2010. "Projecting municipal solid waste: The case of Hong Kong SAR," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 759-768.
    11. Henry A. Colorado & Andrea Muñoz & Sergio Neves Monteiro, 2022. "Circular Economy of Construction and Demolition Waste: A Case Study of Colombia," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    12. Gi-Wook Cha & Won-Hwa Hong & Se-Hyu Choi & Young-Chan Kim, 2023. "Developing an Optimal Ensemble Model to Estimate Building Demolition Waste Generation Rate," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    13. Li, Jingru & Ding, Zhikun & Mi, Xuming & Wang, Jiayuan, 2013. "A model for estimating construction waste generation index for building project in China," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 20-26.
    14. Dong Yang & Mengyuan Dang & Lingwen Sun & Feng Han & Feng Shi & Hongbo Zhang & Hongjun Zhang, 2021. "A System Dynamics Model for Urban Residential Building Stock towards Sustainability: The Case of Jinan, China," IJERPH, MDPI, vol. 18(18), pages 1-23, September.
    15. Kleemann, Fritz & Lehner, Hubert & Szczypińska, Anna & Lederer, Jakob & Fellner, Johann, 2017. "Using change detection data to assess amount and composition of demolition waste from buildings in Vienna," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 37-46.
    16. Taulo, J.L. & Sebitosi, A.B., 2016. "Material and energy flow analysis of the Malawian tea industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1337-1350.
    17. Kien Ton Tong & Ngoc Tan Nguyen & Giang Hoang Nguyen & Tomonori Ishigaki & Ken Kawamoto, 2022. "Management Assessment and Future Projections of Construction and Demolition Waste Generation in Hai Phong City, Vietnam," Sustainability, MDPI, vol. 14(15), pages 1-29, August.
    18. Zhikun Ding & Mengjie Shi & Chen Lu & Zezhou Wu & Dan Chong & Wenyan Gong, 2019. "Predicting Renovation Waste Generation Based on Grey System Theory: A Case Study of Shenzhen," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    19. Villoria Sáez, Paola & del Río Merino, Mercedes & Porras-Amores, César & San-Antonio González, Alicia, 2014. "Assessing the accumulation of construction waste generation during residential building construction works," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 67-74.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:11:y:2007:i:3:p:27-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.