IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v100y2015icp70-80.html
   My bibliography  Save this article

A field based methodology for estimating waste generation rates at various stages of construction projects

Author

Listed:
  • Bakshan, Amal
  • Srour, Issam
  • Chehab, Ghassan
  • El-Fadel, Mutasem

Abstract

The growth in construction activities over the past two decades has resulted in a parallel increase in the amount of generated construction waste. This growth, coupled with shortages in landfill space particularly in urban areas, has proven to be a challenging stressor to the environment. Management of construction waste has thus become a problem attracting increasing attention worldwide. In this context, the quantification of waste streams generated from various construction stages is the first step for managing construction waste. In this study, a methodology for quantifying waste streams arising at various construction stages is proposed. The methodology is then tested at a field scale to estimate generation rates for major waste streams and the total construction waste generation rate for the purpose of developing a generalized construction waste management plan that can be applied at a city/regional/country level. The results of the study reveal that the total construction waste generation rate falls within the range of 38–43kg/m2, with masonry and concrete constituting more than 60% of the total waste. The study concludes with a set of recommendations addressing the most important issues contributing to a successful implementation of an integrated construction waste management plan.

Suggested Citation

  • Bakshan, Amal & Srour, Issam & Chehab, Ghassan & El-Fadel, Mutasem, 2015. "A field based methodology for estimating waste generation rates at various stages of construction projects," Resources, Conservation & Recycling, Elsevier, vol. 100(C), pages 70-80.
  • Handle: RePEc:eee:recore:v:100:y:2015:i:c:p:70-80
    DOI: 10.1016/j.resconrec.2015.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344915000804
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2015.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jingru & Ding, Zhikun & Mi, Xuming & Wang, Jiayuan, 2013. "A model for estimating construction waste generation index for building project in China," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 20-26.
    2. Ortiz, Oscar & Pasqualino, Jorgelina C. & Díez, Gloria & Castells, Francesc, 2010. "The environmental impact of the construction phase: An application to composite walls from a life cycle perspective," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 832-840.
    3. Begum, Rawshan Ara & Siwar, Chamhuri & Pereira, Joy Jacqueline & Jaafar, Abdul Hamid, 2009. "Attitude and behavioral factors in waste management in the construction industry of Malaysia," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 321-328.
    4. Håvard Bergsdal & Rolf André Bohne & Helge Brattebø, 2007. "Projection of Construction and Demolition Waste in Norway," Journal of Industrial Ecology, Yale University, vol. 11(3), pages 27-39, July.
    5. Zhao, W. & Leeftink, R.B. & Rotter, V.S., 2010. "Evaluation of the economic feasibility for the recycling of construction and demolition waste in China—The case of Chongqing," Resources, Conservation & Recycling, Elsevier, vol. 54(6), pages 377-389.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yashuai & Zhang, Xueqing & Ding, Guoyu & Feng, Zhouquan, 2016. "Developing a quantitative construction waste estimation model for building construction projects," Resources, Conservation & Recycling, Elsevier, vol. 106(C), pages 9-20.
    2. Casanovas-Rubio, Maria del Mar & Ramos, Gonzalo, 2017. "Decision-making tool for the assessment and selection of construction processes based on environmental criteria: Application to precast and cast-in-situ alternatives," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 107-117.
    3. Bakshan, Amal & Srour, Issam & Chehab, Ghassan & El-Fadel, Mutasem & Karaziwan, Jalal, 2017. "Behavioral determinants towards enhancing construction waste management: A Bayesian Network analysis," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 274-284.
    4. Lu, Weisheng & Chen, Xi & Peng, Yi & Shen, Liyin, 2015. "Benchmarking construction waste management performance using big data," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 49-58.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Villoria Sáez, Paola & del Río Merino, Mercedes & Porras-Amores, César & San-Antonio González, Alicia, 2014. "Assessing the accumulation of construction waste generation during residential building construction works," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 67-74.
    2. Kien Ton Tong & Ngoc Tan Nguyen & Giang Hoang Nguyen & Tomonori Ishigaki & Ken Kawamoto, 2022. "Management Assessment and Future Projections of Construction and Demolition Waste Generation in Hai Phong City, Vietnam," Sustainability, MDPI, vol. 14(15), pages 1-29, August.
    3. Gangolells, Marta & Casals, Miquel & Forcada, Núria & Macarulla, Marcel, 2014. "Analysis of the implementation of effective waste management practices in construction projects and sites," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 99-111.
    4. Benson Teck Heng Lim & Bee Lan Oo & Charlie McLeod & Pengqi Yang, 2024. "Institutional and Actor Network Perspectives of Waste Management in Australia: Is the Construction Industry Prepared for a Circular Economy?," Sustainability, MDPI, vol. 16(2), pages 1-21, January.
    5. Villoria Saez, Paola & del Río Merino, Mercedes & San-Antonio González, Alicia & Porras-Amores, César, 2013. "Best practice measures assessment for construction and demolition waste management in building constructions," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 52-62.
    6. Udawatta, Nilupa & Zuo, Jian & Chiveralls, Keri & Zillante, George, 2015. "Improving waste management in construction projects: An Australian study," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 73-83.
    7. Heni Fitriani & Saheed Ajayi & Sunkuk Kim, 2022. "Analysis of the Underlying Causes of Waste Generation in Indonesia’s Construction Industry," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    8. Dong Yang & Mengyuan Dang & Lingwen Sun & Feng Han & Feng Shi & Hongbo Zhang & Hongjun Zhang, 2021. "A System Dynamics Model for Urban Residential Building Stock towards Sustainability: The Case of Jinan, China," IJERPH, MDPI, vol. 18(18), pages 1-23, September.
    9. Natasha Juliana & Suddin Lada & Brahim Chekima & Azaze-Azizi Abdul Adis, 2022. "Exploring Determinants Shaping Recycling Behavior Using an Extended Theory of Planned Behavior Model: An Empirical Study of Households in Sabah, Malaysia," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    10. Chen, Rong-Hui & Lin, Yuanhsu & Tseng, Ming-Lang, 2015. "Multicriteria analysis of sustainable development indicators in the construction minerals industry in China," Resources Policy, Elsevier, vol. 46(P1), pages 123-133.
    11. Luiz Maurício Maués & Norma Beltrão & Isabela Silva, 2021. "GHG Emissions Assessment of Civil Construction Waste Disposal and Transportation Process in the Eastern Amazon," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    12. Zhao, W. & Ren, H. & Rotter, V.S., 2011. "A system dynamics model for evaluating the alternative of type in construction and demolition waste recycling center – The case of Chongqing, China," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 933-944.
    13. Jin, Ruoyu & Li, Bo & Zhou, Tongyu & Wanatowski, Dariusz & Piroozfar, Poorang, 2017. "An empirical study of perceptions towards construction and demolition waste recycling and reuse in China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 86-98.
    14. Noguchi, Takafumi & Park, Won-Jun & Kitagaki, Ryoma, 2015. "Risk evaluation for recycled aggregate according to deleterious impurity content considering deconstruction scenarios and production methods," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 405-416.
    15. Lilliana Abarca-Guerrero & Susi Lobo-Ugalde & Nicole Méndez-Carpio & Rosibel Rodríguez-Leandro & Victoria Rudin-Vega, 2022. "Zero Waste Systems: Barriers and Measures to Recycling of Construction and Demolition Waste," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    16. Chung, Shan Shan, 2010. "Projecting municipal solid waste: The case of Hong Kong SAR," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 759-768.
    17. Taulo, J.L. & Sebitosi, A.B., 2016. "Material and energy flow analysis of the Malawian tea industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1337-1350.
    18. Li, Jingru & Ding, Zhikun & Mi, Xuming & Wang, Jiayuan, 2013. "A model for estimating construction waste generation index for building project in China," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 20-26.
    19. Dongliang Zhang & Guangqing Huang & Xiaoling Yin & Qinghua Gong, 2015. "Residents’ Waste Separation Behaviors at the Source: Using SEM with the Theory of Planned Behavior in Guangzhou, China," IJERPH, MDPI, vol. 12(8), pages 1-17, August.
    20. Li, Jingru & Tam, Vivian W.Y. & Zuo, Jian & Zhu, Jiaolan, 2015. "Designers’ attitude and behaviour towards construction waste minimization by design: A study in Shenzhen, China," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 29-35.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:100:y:2015:i:c:p:70-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.