IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v104y2015ipbp405-416.html
   My bibliography  Save this article

Risk evaluation for recycled aggregate according to deleterious impurity content considering deconstruction scenarios and production methods

Author

Listed:
  • Noguchi, Takafumi
  • Park, Won-Jun
  • Kitagaki, Ryoma

Abstract

Recycled aggregate (RA) obtained from demolished concrete waste (CW) is beneficial owing to its applicability in recycled aggregate concrete (RAC). However, in designing RAC mix proportions, various impurities in the RA that can adversely affect the properties of the concrete, should be considered. Current RA production focuses on the physical quality of the RA without consideration of the impurities present. To improve the stable production and use of RAC, the amounts of deleterious impurities present and their effects on the concrete mix should be estimated. In this study, the risk associated with the presence of impurities in RA was defined as including the amount of impurity residue in the RA and the effects of impurities on RAC properties Both impurity types and RA production methods were considered in assessing risk for five building demolition scenarios. To quantify the risk, the amount of demolished building waste was estimated, the amount of CW was predicted, the RA ratio was calculated from the predicted amount of CW, and impurity sorting levels were investigated for nine methods of RA production. The impurity residue ratio per unit RA was estimated for each demolition scenario, RA production method, and RA quality level considered. A risk model is proposed in this paper that can be used to estimate the risk of RA adversely affecting RAC performance using information on the demolition scenario and the RA production method.

Suggested Citation

  • Noguchi, Takafumi & Park, Won-Jun & Kitagaki, Ryoma, 2015. "Risk evaluation for recycled aggregate according to deleterious impurity content considering deconstruction scenarios and production methods," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 405-416.
  • Handle: RePEc:eee:recore:v:104:y:2015:i:pb:p:405-416
    DOI: 10.1016/j.resconrec.2015.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344915300628
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2015.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Weisheng & Tam, Vivian W.Y., 2013. "Construction waste management policies and their effectiveness in Hong Kong: A longitudinal review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 214-223.
    2. Quattrone, Marco & Angulo, Sergio C. & John, Vanderley M., 2014. "Energy and CO2 from high performance recycled aggregate production," Resources, Conservation & Recycling, Elsevier, vol. 90(C), pages 21-33.
    3. Li, Jingru & Ding, Zhikun & Mi, Xuming & Wang, Jiayuan, 2013. "A model for estimating construction waste generation index for building project in China," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 20-26.
    4. Rao, Akash & Jha, Kumar N. & Misra, Sudhir, 2007. "Use of aggregates from recycled construction and demolition waste in concrete," Resources, Conservation & Recycling, Elsevier, vol. 50(1), pages 71-81.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wijayasundara, Mayuri & Mendis, Priyan & Zhang, Lihai & Sofi, Massoud, 2016. "Financial assessment of manufacturing recycled aggregate concrete in ready-mix concrete plants," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 187-201.
    2. Ying Huang & Liujingtai Pan & Yifei He & Zheqing Xie & Xiufang Zheng, 2022. "A BIM–WMS Management Tool for the Reverse Logistics Supply Chain of Demolition Waste," Sustainability, MDPI, vol. 14(23), pages 1-16, December.
    3. Wang, Fang & Gao, Yue & Dong, Wenxu & Li, Zhiwei & Jia, Xiaoping & Tan, Raymond R., 2017. "Segmented pinch analysis for environmental risk management," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 353-361.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna M. Grabiec & Jeonghyun Kim & Andrzej Ubysz & Pilar Bilbao, 2021. "Some Remarks towards a Better Understanding of the Use of Concrete Recycled Aggregate: A Review," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    2. Doussoulin, Jean Pierre & Bittencourt, Mariana, 2022. "How effective is the construction sector in promoting the circular economy in Brazil and France? : A waste input-output analysis," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 47-58.
    3. Zezhou Wu & Ann T.W. Yu & Chi Sun Poon, 2020. "Promoting effective construction and demolition waste management towards sustainable development: A case study of Hong Kong," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(6), pages 1713-1724, November.
    4. Duan, Huabo & Wang, Jiayuan & Huang, Qifei, 2015. "Encouraging the environmentally sound management of C&D waste in China: An integrative review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 611-620.
    5. Wanchai Yodsudjai & Kirati Nitichote, 2022. "Chloride Penetration Behavior of Concrete Made from Various Types of Recycled Concrete Aggregate," Sustainability, MDPI, vol. 14(5), pages 1-14, February.
    6. Knoeri, Christof & Binder, Claudia R. & Althaus, Hans-Joerg, 2011. "Decisions on recycling: Construction stakeholders’ decisions regarding recycled mineral construction materials," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1039-1050.
    7. Jin, Ruoyu & Li, Bo & Zhou, Tongyu & Wanatowski, Dariusz & Piroozfar, Poorang, 2017. "An empirical study of perceptions towards construction and demolition waste recycling and reuse in China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 86-98.
    8. Li, Jingru & Tam, Vivian W.Y. & Zuo, Jian & Zhu, Jiaolan, 2015. "Designers’ attitude and behaviour towards construction waste minimization by design: A study in Shenzhen, China," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 29-35.
    9. Tam, Vivian W.Y. & Le, Khoa N., 2007. "Aggregate testing using 2nd-, 7th- and 10th-order interpolation polynomials," Resources, Conservation & Recycling, Elsevier, vol. 52(1), pages 39-57.
    10. Jean Pierre Doussoulin & Mariana Bittencourt, 2018. "Analysing the circular economy opportunities in the French construction sector related to the sustainable supply chain: a waste input-output analysis," Post-Print hal-02562227, HAL.
    11. Villoria Sáez, Paola & del Río Merino, Mercedes & Porras-Amores, César & San-Antonio González, Alicia, 2014. "Assessing the accumulation of construction waste generation during residential building construction works," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 67-74.
    12. Wijayasundara, Mayuri & Mendis, Priyan & Zhang, Lihai & Sofi, Massoud, 2016. "Financial assessment of manufacturing recycled aggregate concrete in ready-mix concrete plants," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 187-201.
    13. Bakshan, Amal & Srour, Issam & Chehab, Ghassan & El-Fadel, Mutasem, 2015. "A field based methodology for estimating waste generation rates at various stages of construction projects," Resources, Conservation & Recycling, Elsevier, vol. 100(C), pages 70-80.
    14. Castorina S. Vieira & Paulo M. Pereira, 2022. "Influence of the Geosynthetic Type and Compaction Conditions on the Pullout Behaviour of Geosynthetics Embedded in Recycled Construction and Demolition Materials," Sustainability, MDPI, vol. 14(3), pages 1-21, January.
    15. Vivian Wing-Yan Tam & Weisheng Lu, 2016. "Construction Waste Management Profiles, Practices, and Performance: A Cross-Jurisdictional Analysis in Four Countries," Sustainability, MDPI, vol. 8(2), pages 1-16, February.
    16. Sabai, M.M. & Cox, M.G.D.M. & Mato, R.R. & Egmond, E.L.C. & Lichtenberg, J.J.N., 2013. "Concrete block production from construction and demolition waste in Tanzania," Resources, Conservation & Recycling, Elsevier, vol. 72(C), pages 9-19.
    17. Paulo Miguel Pereira & Castorina Silva Vieira, 2022. "A Literature Review on the Use of Recycled Construction and Demolition Materials in Unbound Pavement Applications," Sustainability, MDPI, vol. 14(21), pages 1-28, October.
    18. Spoerri, Andy & Lang, Daniel J. & Binder, Claudia R. & Scholz, Roland W., 2009. "Expert-based scenarios for strategic waste and resource management planning—C&D waste recycling in the Canton of Zurich, Switzerland," Resources, Conservation & Recycling, Elsevier, vol. 53(10), pages 592-600.
    19. Lin, Sheng-Hau & Zhang, Hejie & Li, Jia-Hsuan & Ye, Cheng-Zhou & Hsieh, Jing-Chzi, 2022. "Evaluating smart office buildings from a sustainability perspective: A model of hybrid multi-attribute decision-making," Technology in Society, Elsevier, vol. 68(C).
    20. Wang, Tao & Tian, Xin & Hashimoto, Seiji & Tanikawa, Hiroki, 2015. "Concrete transformation of buildings in China and implications for the steel cycle," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 205-215.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:104:y:2015:i:pb:p:405-416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.