IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v116y2017icp116-123.html
   My bibliography  Save this article

Exploring factors influencing post-consumer gypsum recycling and landfilling in the European Union

Author

Listed:
  • Jiménez-Rivero, Ana
  • García-Navarro, Justo

Abstract

Post-consumer gypsum waste (GW) is increasingly generated in the European Union and not adequately managed in 20 out of the 28 European countries. Overall, it is estimated that 87% of post-consumer GW is landfilled in the EU-28. This waste stream holds unique characteristics, mainly due to its non-inert nature and its high sulphate content. Two main undesirable effects are produced when gypsum is not managed appropriately. First, gypsum contaminates concrete for recycling when treated as mixed waste. Second, the disposal of GW at landfills poses a risk of higher landfill emissions. Overall, potential secondary resources are lost. The main objective of this study is to explore factors influencing gypsum recycling and landfilling in the EU-28. The method includes a study of the literature and a structured questionnaire distributed to stakeholders. Data analysis is used to rank the critical factors (CFs) and conduct a comparison of respondents’ views divided into two groups (gypsum recycling and non-gypsum recycling countries are differentiated). The results show a set of 15 CFs categorized into four domains: policy, economic, social and environmental. More than half of the CFs belong to the policy domain, which indicates the relevance of regulatory and economic instruments for promoting a circular economy for gypsum.

Suggested Citation

  • Jiménez-Rivero, Ana & García-Navarro, Justo, 2017. "Exploring factors influencing post-consumer gypsum recycling and landfilling in the European Union," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 116-123.
  • Handle: RePEc:eee:recore:v:116:y:2017:i:c:p:116-123
    DOI: 10.1016/j.resconrec.2016.09.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344916302476
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2016.09.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jiayuan & Yuan, Hongping & Kang, Xiangping & Lu, Weisheng, 2010. "Critical success factors for on-site sorting of construction waste: A china study," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 931-936.
    2. Coelho, André & de Brito, Jorge, 2011. "Economic analysis of conventional versus selective demolition—A case study," Resources, Conservation & Recycling, Elsevier, vol. 55(3), pages 382-392.
    3. Dantata, Nasiru & Touran, Ali & Wang, James, 2005. "An analysis of cost and duration for deconstruction and demolition of residential buildings in Massachusetts," Resources, Conservation & Recycling, Elsevier, vol. 44(1), pages 1-15.
    4. Ajayi, Saheed O. & Oyedele, Lukumon O. & Bilal, Muhammad & Akinade, Olugbenga O. & Alaka, Hafiz A. & Owolabi, Hakeem A. & Kadiri, Kabir O., 2015. "Waste effectiveness of the construction industry: Understanding the impediments and requisites for improvements," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 101-112.
    5. Akinade, Olugbenga O. & Oyedele, Lukumon O. & Bilal, Muhammad & Ajayi, Saheed O. & Owolabi, Hakeem A. & Alaka, Hafiz A. & Bello, Sururah A., 2015. "Waste minimisation through deconstruction: A BIM based Deconstructability Assessment Score (BIM-DAS)," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 167-176.
    6. Duran, Xavier & Lenihan, Helena & O’Regan, Bernadette, 2006. "A model for assessing the economic viability of construction and demolition waste recycling—the case of Ireland," Resources, Conservation & Recycling, Elsevier, vol. 46(3), pages 302-320.
    7. Göran Finnveden & Tomas Ekvall & Yevgeniya Arushanyan & Mattias Bisaillon & Greger Henriksson & Ulrika Gunnarsson Östling & Maria Ljunggren Söderman & Jenny Sahlin & Åsa Stenmarck & Johan Sundberg & J, 2013. "Policy Instruments towards a Sustainable Waste Management," Sustainability, MDPI, vol. 5(3), pages 1-41, February.
    8. Jiménez Rivero, Ana & Sathre, Roger & García Navarro, Justo, 2016. "Life cycle energy and material flow implications of gypsum plasterboard recycling in the European Union," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 171-181.
    9. M. M. M. Teo & M. Loosemore, 2001. "A theory of waste behaviour in the construction industry," Construction Management and Economics, Taylor & Francis Journals, vol. 19(7), pages 741-751.
    10. Lu, Weisheng & Yuan, Hongping, 2010. "Exploring critical success factors for waste management in construction projects of China," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 201-208.
    11. Li, Mei & Yang, Jay, 2014. "Critical factors for waste management in office building retrofit projects in Australia," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 85-98.
    12. João Couto & Armanda Couto, 2010. "Analysis of Barriers and the Potential for Exploration of Deconstruction Techniques in Portuguese Construction Sites," Sustainability, MDPI, vol. 2(2), pages 1-15, January.
    13. Villoria Saez, Paola & del Río Merino, Mercedes & San-Antonio González, Alicia & Porras-Amores, César, 2013. "Best practice measures assessment for construction and demolition waste management in building constructions," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 52-62.
    14. Begum, Rawshan Ara & Siwar, Chamhuri & Pereira, Joy Jacqueline & Jaafar, Abdul Hamid, 2009. "Attitude and behavioral factors in waste management in the construction industry of Malaysia," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 321-328.
    15. Oyedele, Lukumon O. & Ajayi, Saheed O. & Kadiri, Kabir O., 2014. "Use of recycled products in UK construction industry: An empirical investigation into critical impediments and strategies for improvement," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 23-31.
    16. Luis Delgado Sancho & Ana Sofia Catarino & Peter Eder & Donald Litten & Zheng Luo & Alejandro Villanueva Krzyzaniak, 2009. "End-of-Waste Criteria," JRC Research Reports JRC53238, Joint Research Centre.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Udawatta, Nilupa & Zuo, Jian & Chiveralls, Keri & Zillante, George, 2015. "Improving waste management in construction projects: An Australian study," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 73-83.
    2. Li, Mei & Yang, Jay, 2014. "Critical factors for waste management in office building retrofit projects in Australia," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 85-98.
    3. Jianguo Chen & Yangyue Su & Hongyun Si & Jindao Chen, 2018. "Managerial Areas of Construction and Demolition Waste: A Scientometric Review," IJERPH, MDPI, vol. 15(11), pages 1-20, October.
    4. Villoria Saez, Paola & del Río Merino, Mercedes & San-Antonio González, Alicia & Porras-Amores, César, 2013. "Best practice measures assessment for construction and demolition waste management in building constructions," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 52-62.
    5. Esa, Mohd Reza & Halog, Anthony & Rigamonti, Lucia, 2017. "Strategies for minimizing construction and demolition wastes in Malaysia," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 219-229.
    6. Ajayi, Saheed O. & Oyedele, Lukumon O. & Bilal, Muhammad & Akinade, Olugbenga O. & Alaka, Hafiz A. & Owolabi, Hakeem A. & Kadiri, Kabir O., 2015. "Waste effectiveness of the construction industry: Understanding the impediments and requisites for improvements," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 101-112.
    7. Gangolells, Marta & Casals, Miquel & Forcada, Núria & Macarulla, Marcel, 2014. "Analysis of the implementation of effective waste management practices in construction projects and sites," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 99-111.
    8. Heni Fitriani & Saheed Ajayi & Sunkuk Kim, 2022. "Analysis of the Underlying Causes of Waste Generation in Indonesia’s Construction Industry," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    9. Wang, Jiayuan & Li, Zhengdao & Tam, Vivian W.Y., 2014. "Critical factors in effective construction waste minimization at the design stage: A Shenzhen case study, China," Resources, Conservation & Recycling, Elsevier, vol. 82(C), pages 1-7.
    10. Jin, Ruoyu & Li, Bo & Zhou, Tongyu & Wanatowski, Dariusz & Piroozfar, Poorang, 2017. "An empirical study of perceptions towards construction and demolition waste recycling and reuse in China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 86-98.
    11. Bakshan, Amal & Srour, Issam & Chehab, Ghassan & El-Fadel, Mutasem & Karaziwan, Jalal, 2017. "Behavioral determinants towards enhancing construction waste management: A Bayesian Network analysis," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 274-284.
    12. Nehal Elshaboury & Abobakr Al-Sakkaf & Eslam Mohammed Abdelkader & Ghasan Alfalah, 2022. "Construction and Demolition Waste Management Research: A Science Mapping Analysis," IJERPH, MDPI, vol. 19(8), pages 1-25, April.
    13. Akinade, Olugbenga O. & Oyedele, Lukumon O. & Bilal, Muhammad & Ajayi, Saheed O. & Owolabi, Hakeem A. & Alaka, Hafiz A. & Bello, Sururah A., 2015. "Waste minimisation through deconstruction: A BIM based Deconstructability Assessment Score (BIM-DAS)," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 167-176.
    14. Benson Teck Heng Lim & Bee Lan Oo & Charlie McLeod & Pengqi Yang, 2024. "Institutional and Actor Network Perspectives of Waste Management in Australia: Is the Construction Industry Prepared for a Circular Economy?," Sustainability, MDPI, vol. 16(2), pages 1-21, January.
    15. Dongchen Han & Mohsen Kalantari & Abbas Rajabifard, 2021. "Building Information Modeling (BIM) for Construction and Demolition Waste Management in Australia: A Research Agenda," Sustainability, MDPI, vol. 13(23), pages 1-22, November.
    16. Li, Jingru & Tam, Vivian W.Y. & Zuo, Jian & Zhu, Jiaolan, 2015. "Designers’ attitude and behaviour towards construction waste minimization by design: A study in Shenzhen, China," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 29-35.
    17. Cooper, Simone & Skelton, Alexandra C.H. & Owen, Anne & Densley-Tingley, Danielle & Allwood, Julian M., 2016. "A multi-method approach for analysing the potential employment impacts of material efficiency," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 54-66.
    18. Park, Joo Young, 2014. "Assessing determinants of industrial waste reuse: The case of coal ash in the United States," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 116-127.
    19. Villoria Sáez, Paola & del Río Merino, Mercedes & Porras-Amores, César & San-Antonio González, Alicia, 2014. "Assessing the accumulation of construction waste generation during residential building construction works," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 67-74.
    20. Oluwole Abayomi Soyinka & Mesthrige Jayantha Wadu & Udara Willhelm Abeydera Lebunu Hewage & Timo Olugbenga Oladinrin, 2023. "Scientometric review of construction demolition waste management: a global sustainability perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10533-10565, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:116:y:2017:i:c:p:116-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.