IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v105y2015ipap49-58.html
   My bibliography  Save this article

Benchmarking construction waste management performance using big data

Author

Listed:
  • Lu, Weisheng
  • Chen, Xi
  • Peng, Yi
  • Shen, Liyin

Abstract

The waste generation rate (WGR) is usually used as a key performance indicator (KPI) to benchmark construction waste management (CWM) performance, with a view to improving the performance continuously. However, existing researches, for different reasons, only investigated a relatively small amount of construction projects, whose WGRs cannot be confidently accepted as KPIs. This study develops a set of more reliable KPIs/WGRs using an available big dataset on CWM in Hong Kong. By mining the 2,212,026 waste disposal records generated from 5764 projects in two consecutive years of 2011 and 2012, the WGRs/KPIs are revisited and refined. Demolition is found the most wasteful works. New building, and maintenance and renovation (M&R) works individually produce the least waste amount but by accumulating all M&R works, their contribution to the total amount of construction waste could be phenomenal. Based on the more reliable WGRs from the big data, CWM performance benchmarks for different categories of projects are set up. A contractor can benchmark its CWM performance against its counterparts or its past performance as ‘Good’, ‘Average’, and ‘Not-so-good’, and thus identify better CWM practices that induce superior performance. Based on the benchmarks, the government may consider setting up a WGR-step toll system to encourage those ‘Not-so-good’ contractors to perform well in the future, and initiate incentives to the companies conducting ‘Good’ projects to spur better CWM performance. Overall, the WGRs derived from the big data and more robust analyses provide a very powerful and handy tool for CWM.

Suggested Citation

  • Lu, Weisheng & Chen, Xi & Peng, Yi & Shen, Liyin, 2015. "Benchmarking construction waste management performance using big data," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 49-58.
  • Handle: RePEc:eee:recore:v:105:y:2015:i:pa:p:49-58
    DOI: 10.1016/j.resconrec.2015.10.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344915301099
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2015.10.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Weisheng & Peng, Yi & Webster, Chris & Zuo, Jian, 2015. "Stakeholders’ willingness to pay for enhanced construction waste management: A Hong Kong study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 233-240.
    2. Lu, Weisheng & Tam, Vivian W.Y., 2013. "Construction waste management policies and their effectiveness in Hong Kong: A longitudinal review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 214-223.
    3. Bakshan, Amal & Srour, Issam & Chehab, Ghassan & El-Fadel, Mutasem, 2015. "A field based methodology for estimating waste generation rates at various stages of construction projects," Resources, Conservation & Recycling, Elsevier, vol. 100(C), pages 70-80.
    4. Yuan, Hongping & Lu, Weisheng & Jianli Hao, Jane, 2013. "The evolution of construction waste sorting on-site," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 483-490.
    5. Chi Sun Poon & Ann Tit Wan Yu & Sze Wai Wong & Esther Cheung, 2004. "Management of construction waste in public housing projects in Hong Kong," Construction Management and Economics, Taylor & Francis Journals, vol. 22(7), pages 675-689.
    6. Lu, Weisheng & Yuan, Hongping, 2013. "Investigating waste reduction potential in the upstream processes of offshore prefabrication construction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 804-811.
    7. Villoria Saez, Paola & del Río Merino, Mercedes & San-Antonio González, Alicia & Porras-Amores, César, 2013. "Best practice measures assessment for construction and demolition waste management in building constructions," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 52-62.
    8. Bruce Mcdonald & Mark Smithers, 1998. "Implementing a waste management plan during the construction phase of a project: a case study," Construction Management and Economics, Taylor & Francis Journals, vol. 16(1), pages 71-78.
    9. Sai On Cheung, 2010. "Relational Contracting for Construction Excellence: Principles, Practices and Case Studies," Construction Management and Economics, Taylor & Francis Journals, vol. 28(7), pages 805-806.
    10. C. S. Poon & Ann Yu & L. Jaillon, 2004. "Reducing building waste at construction sites in Hong Kong," Construction Management and Economics, Taylor & Francis Journals, vol. 22(5), pages 461-470.
    11. Gangolells, Marta & Casals, Miquel & Forcada, Núria & Macarulla, Marcel, 2014. "Analysis of the implementation of effective waste management practices in construction projects and sites," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 99-111.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junling Jiang & Zhaoxin He & Changren Ke, 2023. "Construction Contractors’ Carbon Emissions Reduction Intention: A Study Based on Structural Equation Model," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    2. Truong Dang Hoang Nhat Nguyen & Hyosoo Moon & Yonghan Ahn, 2022. "Critical Review of Trends in Modular Integrated Construction Research with a Focus on Sustainability," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    3. Nehal Elshaboury & Abobakr Al-Sakkaf & Eslam Mohammed Abdelkader & Ghasan Alfalah, 2022. "Construction and Demolition Waste Management Research: A Science Mapping Analysis," IJERPH, MDPI, vol. 19(8), pages 1-25, April.
    4. Isaac Akomea-Frimpong & Xiaohua Jin & Robert Osei-Kyei, 2022. "Mapping Studies on Sustainability in the Performance Measurement of Public-Private Partnership Projects: A Systematic Review," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    5. Johanna Karina Solano Meza & David Orjuela Yepes & Javier Rodrigo-Ilarri & María-Elena Rodrigo-Clavero, 2023. "Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    6. Søren Munch Lindhard & Simon Wyke & Hadi Mahami & Seyyed Saeed Vaezzadeh & Kjeld Svidt, 2023. "Waste Generation Predictions and On-Site Waste Management: A Danish Perspective," Sustainability, MDPI, vol. 15(5), pages 1-18, February.
    7. Jianguo Chen & Yangyue Su & Hongyun Si & Jindao Chen, 2018. "Managerial Areas of Construction and Demolition Waste: A Scientometric Review," IJERPH, MDPI, vol. 15(11), pages 1-20, October.
    8. Li Wang & Yanhong Lv & Siyu Huang & Yu Liu & Xinrong Li, 2023. "The Evolution of Research on C&D Waste and Sustainable Development of Resources: A Bibliometric Study," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    9. Esa, Mohd Reza & Halog, Anthony & Rigamonti, Lucia, 2017. "Strategies for minimizing construction and demolition wastes in Malaysia," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 219-229.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Udawatta, Nilupa & Zuo, Jian & Chiveralls, Keri & Zillante, George, 2015. "Improving waste management in construction projects: An Australian study," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 73-83.
    2. Esa, Mohd Reza & Halog, Anthony & Rigamonti, Lucia, 2017. "Strategies for minimizing construction and demolition wastes in Malaysia," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 219-229.
    3. Doussoulin, Jean Pierre & Bittencourt, Mariana, 2022. "How effective is the construction sector in promoting the circular economy in Brazil and France? : A waste input-output analysis," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 47-58.
    4. Wang, Jiayuan & Li, Zhengdao & Tam, Vivian W.Y., 2014. "Critical factors in effective construction waste minimization at the design stage: A Shenzhen case study, China," Resources, Conservation & Recycling, Elsevier, vol. 82(C), pages 1-7.
    5. Duan, Huabo & Wang, Jiayuan & Huang, Qifei, 2015. "Encouraging the environmentally sound management of C&D waste in China: An integrative review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 611-620.
    6. Lu, Weisheng & Yuan, Hongping, 2010. "Exploring critical success factors for waste management in construction projects of China," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 201-208.
    7. Lu, Weisheng & Yuan, Hongping, 2013. "Investigating waste reduction potential in the upstream processes of offshore prefabrication construction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 804-811.
    8. Lu, Weisheng & Webster, Chris & Chen, Ke & Zhang, Xiaoling & Chen, Xi, 2017. "Computational Building Information Modelling for construction waste management: Moving from rhetoric to reality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 587-595.
    9. Li, Jingru & Ding, Zhikun & Mi, Xuming & Wang, Jiayuan, 2013. "A model for estimating construction waste generation index for building project in China," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 20-26.
    10. Li, Jingru & Tam, Vivian W.Y. & Zuo, Jian & Zhu, Jiaolan, 2015. "Designers’ attitude and behaviour towards construction waste minimization by design: A study in Shenzhen, China," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 29-35.
    11. Zhikun Ding & Wenyan Gong & Shenghan Li & Zezhou Wu, 2018. "System Dynamics versus Agent-Based Modeling: A Review of Complexity Simulation in Construction Waste Management," Sustainability, MDPI, vol. 10(7), pages 1-13, July.
    12. Ajayi, Saheed O. & Oyedele, Lukumon O. & Bilal, Muhammad & Akinade, Olugbenga O. & Alaka, Hafiz A. & Owolabi, Hakeem A. & Kadiri, Kabir O., 2015. "Waste effectiveness of the construction industry: Understanding the impediments and requisites for improvements," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 101-112.
    13. Li, Mei & Yang, Jay, 2014. "Critical factors for waste management in office building retrofit projects in Australia," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 85-98.
    14. Zhang, Xiaoling & Wu, Yuzhe & Shen, Liyin, 2012. "Application of low waste technologies for design and construction: A case study in Hong Kong," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2973-2979.
    15. Li, Zhengdao & Shen, Geoffrey Qiping & Alshawi, Mustafa, 2014. "Measuring the impact of prefabrication on construction waste reduction: An empirical study in China," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 27-39.
    16. Li, Yashuai & Zhang, Xueqing & Ding, Guoyu & Feng, Zhouquan, 2016. "Developing a quantitative construction waste estimation model for building construction projects," Resources, Conservation & Recycling, Elsevier, vol. 106(C), pages 9-20.
    17. Lu, Weisheng & Peng, Yi & Webster, Chris & Zuo, Jian, 2015. "Stakeholders’ willingness to pay for enhanced construction waste management: A Hong Kong study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 233-240.
    18. Ayodeji Emmanuel Oke & Ahmed Farouk Kineber & Mohamed Elseknidy & Fakunle Samuel Kayode, 2023. "Radio frequency identification implementation model for sustainable development: A structural equation modeling approach," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1824-1844, June.
    19. Carmen van der Merwe & Martin de Wit, 2021. "An In-Depth Investigation into the Relationship Between Municipal Solid Waste Generation and Economic Growth in the City of Cape Town," Working Papers 07/2021, Stellenbosch University, Department of Economics, revised 2021.
    20. Kien Ton Tong & Ngoc Tan Nguyen & Giang Hoang Nguyen & Tomonori Ishigaki & Ken Kawamoto, 2022. "Management Assessment and Future Projections of Construction and Demolition Waste Generation in Hai Phong City, Vietnam," Sustainability, MDPI, vol. 14(15), pages 1-29, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:105:y:2015:i:pa:p:49-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.