IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p7977-d1146220.html
   My bibliography  Save this article

Spatial Layout Assessment of Urban Mining Pilot Bases in China Based on Multi-Source Data Collaboration

Author

Listed:
  • Huimin Liu

    (School of Geosciences and Info-Physics, Central South University, Changsha 410083, China)

  • Mengqian Xu

    (School of Geosciences and Info-Physics, Central South University, Changsha 410083, China)

  • Xuexi Yang

    (School of Geosciences and Info-Physics, Central South University, Changsha 410083, China)

  • Yan Shi

    (School of Geosciences and Info-Physics, Central South University, Changsha 410083, China)

  • Min Deng

    (School of Geosciences and Info-Physics, Central South University, Changsha 410083, China)

Abstract

Rapid urbanization in China has led to an exponential increase in the stocks of metals used in cities. Exploring their amount and growth patterns is an important way to forecast future metal demand and identify the potential for urban mining. Here, we use a combination of bottom-up and GIS tools to estimate the amount of in-use stocks and scrap metal of steel, copper, and aluminum in 366 regions of mainland China from 2010 to 2020. We then downscaled the 2020 metal scrap volume based on a multi-source dataset of socioeconomic factors. Finally, the accessibility of the urban mining pilot base (UMPB) was calculated using the two-step floating catchment area method (2SFCA), and the spatial layout assessment analysis of the UMPB was conducted under the supply–demand balance perspective. The results showed that the total in-use stocks of steel, copper, and aluminum increased from an initial 3186 million tons to 5216 million tons, with a corresponding trend of continued growth in the amount of metal scrap. The high value of scrap metal in 2020 is concentrated in the Beijing–Tianjin–Hebei urban agglomeration, the Yangtze River Delta region, and the Chengdu–Chongqing metropolitan area. The accessibility results show that the road network distance-based accessibility covered a smaller area than the Euclidean distance-based accessibility, but when the UMPB service radius was set to 300 km, the road network distance-based accessibility could also cover most of the eastern part of China. The spatial evaluation results of UMPB show that for service radii of 200 km and 300 km, low-supply and high-demand areas account for 6.32 percent and 5.89 percent, respectively.

Suggested Citation

  • Huimin Liu & Mengqian Xu & Xuexi Yang & Yan Shi & Min Deng, 2023. "Spatial Layout Assessment of Urban Mining Pilot Bases in China Based on Multi-Source Data Collaboration," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7977-:d:1146220
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/7977/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/7977/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shao, Yaxiong & Luo, Wei, 2022. "Supply-demand adjusted two-steps floating catchment area (SDA-2SFCA) model for measuring spatial access to health care," Social Science & Medicine, Elsevier, vol. 296(C).
    2. Parajuly, Keshav & Habib, Komal & Liu, Gang, 2017. "Waste electrical and electronic equipment (WEEE) in Denmark: Flows, quantities and management," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 85-92.
    3. Yang Yang & Ruizhen He & Guohang Tian & Zhen Shi & Xinyu Wang & Albert Fekete, 2022. "Equity Study on Urban Park Accessibility Based on Improved 2SFCA Method in Zhengzhou, China," Land, MDPI, vol. 11(11), pages 1-17, November.
    4. Zhang, Ling & Cai, Zhijian & Yang, Jiameng & Chen, Yan & Yuan, Zengwei, 2014. "Quantification and spatial characterization of in-use copper stocks in Shanghai," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 134-143.
    5. Augiseau, Vincent & Barles, Sabine, 2017. "Studying construction materials flows and stock: A review," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 153-164.
    6. Tao Wang & Daniel B. Müller & Seiji Hashimoto, 2015. "The Ferrous Find: Counting Iron and Steel Stocks in China's Economy," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 877-889, October.
    7. Van Eygen, Emile & De Meester, Steven & Tran, Ha Phuong & Dewulf, Jo, 2016. "Resource savings by urban mining: The case of desktop and laptop computers in Belgium," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 53-64.
    8. Recalde, Korinti & Wang, Jinlong & Graedel, T.E., 2008. "Aluminium in-use stocks in the state of Connecticut," Resources, Conservation & Recycling, Elsevier, vol. 52(11), pages 1271-1282.
    9. Linggui Liu & Han Lyu & Yi Zhao & Dian Zhou, 2022. "An Improved Two-Step Floating Catchment Area (2SFCA) Method for Measuring Spatial Accessibility to Elderly Care Facilities in Xi’an, China," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    10. Dominik Wiedenhofer & Julia K. Steinberger & Nina Eisenmenger & Willi Haas, 2015. "Maintenance and Expansion: Modeling Material Stocks and Flows for Residential Buildings and Transportation Networks in the EU25," Journal of Industrial Ecology, Yale University, vol. 19(4), pages 538-551, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shupeng & Wang, Zhe & Yue, Qiang & Zhang, Tingan, 2022. "Analysis of the quantity and spatial characterization of aluminum in-use stocks in China," Resources Policy, Elsevier, vol. 79(C).
    2. Dai, Tiejun & Yue, Zhongchun, 2023. "The evolution and decoupling of in-use stocks in Beijing," Ecological Economics, Elsevier, vol. 203(C).
    3. Carine Lausselet & Johana Paola Forero Urrego & Eirik Resch & Helge Brattebø, 2021. "Temporal analysis of the material flows and embodied greenhouse gas emissions of a neighborhood building stock," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 419-434, April.
    4. Jakob Lederer & Johann Fellner & Andreas Gassner & Karin Gruhler & Georg Schiller, 2021. "Determining the material intensities of buildings selected by random sampling: A case study from Vienna," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 848-863, August.
    5. Panchal, Rohit & Singh, Anju & Diwan, Hema, 2021. "Economic potential of recycling e-waste in India and its impact on import of materials," Resources Policy, Elsevier, vol. 74(C).
    6. Niko Heeren & Stefanie Hellweg, 2019. "Tracking Construction Material over Space and Time: Prospective and Geo‐referenced Modeling of Building Stocks and Construction Material Flows," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 253-267, February.
    7. Andreas Mayer & Willi Haas & Dominik Wiedenhofer & Fridolin Krausmann & Philip Nuss & Gian Andrea Blengini, 2019. "Measuring Progress towards a Circular Economy: A Monitoring Framework for Economy‐wide Material Loop Closing in the EU28," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 62-76, February.
    8. Keisuke Yoshida & Keijiro Okuoka & Alessio Miatto & Liselotte Schebek & Hiroki Tanikawa, 2019. "Estimation of Mining and Landfilling Activities with Associated Overburden through Satellite Data: Germany 2000–2010," Resources, MDPI, vol. 8(3), pages 1-17, July.
    9. Yupeng Liu & Wei-Qiang Chen & Tao Lin & Lijie Gao, 2019. "How Spatial Analysis Can Help Enhance Material Stocks and Flows Analysis?," Resources, MDPI, vol. 8(1), pages 1-8, March.
    10. Yupeng Liu & Jiajia Li & Wei‐Qiang Chen & Lulu Song & Shaoqing Dai, 2022. "Quantifying urban mass gain and loss by a GIS‐based material stocks and flows analysis," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1051-1060, June.
    11. Babak Ebrahimi & Leonardo Rosado & Holger Wallbaum, 2022. "Machine learning‐based stocks and flows modeling of road infrastructure," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 44-57, February.
    12. Dombi, Mihály, 2021. "Types of planning systems and effects on construction material volumes: An explanatory analysis in Europe," Land Use Policy, Elsevier, vol. 109(C).
    13. Chenling Fu & Yan Zhang & Tianjie Deng & Ichiro Daigo, 2022. "The evolution of material stock research: From exploring to rising to hot studies," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 462-476, April.
    14. Yan Shi & Shanshan Shao & Xuexi Yang & Da Wang & Bingrong Chen & Min Deng, 2023. "Metabolic Process Modeling of Metal Resources Based on System Dynamics—A Case Study for Steel in Mainland China," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    15. Shuntian Xu & Huaxuan Wang & Xin Tian & Tao Wang & Hiroki Tanikawa, 2022. "From efficiency to equity: Changing patterns of China's regional transportation systems from an in‐use steel stocks perspective," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 548-561, April.
    16. Virág, Doris & Wiedenhofer, Dominik & Baumgart, André & Matej, Sarah & Krausmann, Fridolin & Min, Jihoon & Rao, Narasimha D. & Haberl, Helmut, 2022. "How much infrastructure is required to support decent mobility for all? An exploratory assessment," Ecological Economics, Elsevier, vol. 200(C).
    17. Lu, Yan & Xu, Zhenming, 2016. "Precious metals recovery from waste printed circuit boards: A review for current status and perspective," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 28-39.
    18. Lei Mu & Lijun Xing & Ying Jing & Qinjiang Hu, 2023. "Spatial Optimization of Park Green Spaces by an Improved Two-Step Optimization Model from the Perspective of Maximizing Accessibility Equity," Land, MDPI, vol. 12(5), pages 1-20, April.
    19. Miatto, Alessio & Schandl, Heinz & Tanikawa, Hiroki, 2017. "How important are realistic building lifespan assumptions for material stock and demolition waste accounts?," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 143-154.
    20. Xu, Bin & Lin, Boqiang, 2017. "Assessing CO2 emissions in China's iron and steel industry: A nonparametric additive regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 325-337.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7977-:d:1146220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.