IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v26y2022i2p462-476.html
   My bibliography  Save this article

The evolution of material stock research: From exploring to rising to hot studies

Author

Listed:
  • Chenling Fu
  • Yan Zhang
  • Tianjie Deng
  • Ichiro Daigo

Abstract

Material stocks in buildings, infrastructure, and durable products play multiple roles in environmental and socioeconomic systems throughout their life cycle. After half a century of exploration, the study of material stocks has led to the development of a knowledge system. However, an overall picture of the evolution of knowledge in this field is lacking. With the aid of CiteSpace, a science mapping tool, we review 395 publications and find that the study of material stock experienced three obvious stages: initial exploration (1973–2005); rising period (2006–2016); and a hot period (2017–2020). The evolution of material stock research shows a clear objective‐oriented mode. As research objectives evolved from macroscopic observation to refined management of materials, the main research content changed from observational accounting to exploring the application, role, and service functions of material stocks, especially from the perspective of systematic metabolism under the complex background of social transformation. Accounting items shifted from an initial focus on metallic materials to a broader set of materials and product stocks, and from accounting of a single category to multi‐category accounting. The scale of research correspondingly shifted from the national and global scale to the urban and community scale which can serve refined management. These changes also led to in‐depth and detailed study of the role and function of stocks. In the future, scholars should continue to explore and apply microscale models, “whiten” the black box in large scale research; focus on recycling of urban minerals and electronic wastes. Mapping the transformation of raw materials into products by combining material properties and product functions is crucial to concretely implement a circular economy. Differentiation, specialization, combination of approaches, and sub‐categorical and sub‐regional coefficients will be the key to future refined, lean, and precise accounting.

Suggested Citation

  • Chenling Fu & Yan Zhang & Tianjie Deng & Ichiro Daigo, 2022. "The evolution of material stock research: From exploring to rising to hot studies," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 462-476, April.
  • Handle: RePEc:bla:inecol:v:26:y:2022:i:2:p:462-476
    DOI: 10.1111/jiec.13195
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13195
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13195?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Helmut Haberl & Dominik Wiedenhofer & Karl-Heinz Erb & Christoph Görg & Fridolin Krausmann, 2017. "The Material Stock–Flow–Service Nexus: A New Approach for Tackling the Decoupling Conundrum," Sustainability, MDPI, vol. 9(7), pages 1-19, June.
    2. Chaomei Chen & Fidelia Ibekwe‐SanJuan & Jianhua Hou, 2010. "The structure and dynamics of cocitation clusters: A multiple‐perspective cocitation analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(7), pages 1386-1409, July.
    3. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    4. Chaomei Chen & Fidelia Ibekwe-SanJuan & Jianhua Hou, 2010. "The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(7), pages 1386-1409, July.
    5. Wiedenhofer, Dominik & Fishman, Tomer & Lauk, Christian & Haas, Willi & Krausmann, Fridolin, 2019. "Integrating Material Stock Dynamics Into Economy-Wide Material Flow Accounting: Concepts, Modelling, and Global Application for 1900–2050," Ecological Economics, Elsevier, vol. 156(C), pages 121-133.
    6. Augiseau, Vincent & Barles, Sabine, 2017. "Studying construction materials flows and stock: A review," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 153-164.
    7. Hiroki Tanikawa & Tomer Fishman & Keijiro Okuoka & Kenji Sugimoto, 2015. "The Weight of Society Over Time and Space: A Comprehensive Account of the Construction Material Stock of Japan, 1945–2010," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 778-791, October.
    8. T. E. Graedel & Dick van Beers & Marlen Bertram & Kensuke Fuse & Robert B. Gordon & Alexander Gritsinin & Ermelinda M. Harper & Amit Kapur & Robert J. Klee & Reid Lifset & Laiq Memon & Sabrina Spatari, 2005. "The Multilevel Cycle of Anthropogenic Zinc," Journal of Industrial Ecology, Yale University, vol. 9(3), pages 67-90, July.
    9. Tomer Fishman & Heinz Schandl & Hiroki Tanikawa & Paul Walker & Fridolin Krausmann, 2014. "Accounting for the Material Stock of Nations," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 407-420, May.
    10. Dominik Wiedenhofer & Julia K. Steinberger & Nina Eisenmenger & Willi Haas, 2015. "Maintenance and Expansion: Modeling Material Stocks and Flows for Residential Buildings and Transportation Networks in the EU25," Journal of Industrial Ecology, Yale University, vol. 19(4), pages 538-551, August.
    11. Barbara Reck & Marlen Bertram & Daniel B. Müller & T. E. Graedel, 2006. "Multilevel Anthropogenic Cycles of Copper and Zinc: A Comparative Statistical Analysis," Journal of Industrial Ecology, Yale University, vol. 10(1‐2), pages 89-110, January.
    12. Spatari, S. & Bertram, M. & Gordon, Robert B. & Henderson, K. & Graedel, T.E., 2005. "Twentieth century copper stocks and flows in North America: A dynamic analysis," Ecological Economics, Elsevier, vol. 54(1), pages 37-51, July.
    13. Hiroki Tanikawa & Shunsuke Managi & Cherry Myo Lwin, 2014. "Estimates of Lost Material Stock of Buildings and Roads Due to the Great East Japan Earthquake and Tsunami," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 421-431, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Martin del Campo & Simron Jit Singh & Tomer Fishman & Adelle Thomas & Michael Drescher, 2023. "The Bahamas at risk: Material stocks, sea‐level rise, and the implications for development," Journal of Industrial Ecology, Yale University, vol. 27(4), pages 1165-1183, August.
    2. Liang Yuan & Weisheng Lu & Yijie Wu, 2023. "Characterizing the spatiotemporal evolution of building material stock in China's Greater Bay Area: A statistical regression method," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1553-1566, December.
    3. David Frantz & Franz Schug & Dominik Wiedenhofer & André Baumgart & Doris Virág & Sam Cooper & Camila Gómez-Medina & Fabian Lehmann & Thomas Udelhoven & Sebastian Linden & Patrick Hostert & Helmut Hab, 2023. "Unveiling patterns in human dominated landscapes through mapping the mass of US built structures," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathieu, Valentin & Roda, Jean-Marc, 2023. "A meta-analysis on wood trade flow modeling concepts," Forest Policy and Economics, Elsevier, vol. 149(C).
    2. Virág, Doris & Wiedenhofer, Dominik & Baumgart, André & Matej, Sarah & Krausmann, Fridolin & Min, Jihoon & Rao, Narasimha D. & Haberl, Helmut, 2022. "How much infrastructure is required to support decent mobility for all? An exploratory assessment," Ecological Economics, Elsevier, vol. 200(C).
    3. Johnella Bradshaw & Simron Jit Singh & Su-Yin Tan & Tomer Fishman & Kristen Pott, 2020. "GIS-Based Material Stock Analysis (MSA) of Climate Vulnerabilities to the Tourism Industry in Antigua and Barbuda," Sustainability, MDPI, vol. 12(19), pages 1-22, September.
    4. Wiedenhofer, Dominik & Fishman, Tomer & Lauk, Christian & Haas, Willi & Krausmann, Fridolin, 2019. "Integrating Material Stock Dynamics Into Economy-Wide Material Flow Accounting: Concepts, Modelling, and Global Application for 1900–2050," Ecological Economics, Elsevier, vol. 156(C), pages 121-133.
    5. Wang Guizhou & Zhang Si & Yu Tao & Ning Yu, 2021. "A Systematic Overview of Blockchain Research," Journal of Systems Science and Information, De Gruyter, vol. 9(3), pages 205-238, June.
    6. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    7. Jiaxing Jiang & Lin Fan, 2022. "Visualizing the Knowledge Domain of Language Experience: A Bibliometric Analysis," SAGE Open, , vol. 12(1), pages 21582440211, January.
    8. Hu, Wen & Li, Chun-hua & Ye, Chun & Wang, Ji & Wei, Wei-wei & Deng, Yong, 2019. "Research progress on ecological models in the field of water eutrophication: CiteSpace analysis based on data from the ISI web of science database," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    9. Maria Helena Pestana & Artur Parreira & Wan-Chen Wang, 2019. "Bibliometric Analysis and Trends: An Application in Senior Tourism," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 18(3), pages 329-345, December.
    10. Zhibin Peng & Omid Khatin-Zadeh, 2023. "Research on metaphor processing during the past five decades: a bibliometric analysis," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-13, December.
    11. Feng Huang & Danrong Zhang & Xi Chen, 2019. "Vegetation Response to Groundwater Variation in Arid Environments: Visualization of Research Evolution, Synthesis of Response Types, and Estimation of Groundwater Threshold," IJERPH, MDPI, vol. 16(10), pages 1-15, May.
    12. Xin Mai & Roger C. K. Chan, 2020. "Detecting the intellectual pathway of resilience thinking in urban and regional studies: A critical reflection on resilience literature," Growth and Change, Wiley Blackwell, vol. 51(3), pages 876-889, September.
    13. Rui Qiu & Shuhua Hou & Xin Chen & Zhiyi Meng, 2021. "Green aviation industry sustainable development towards an integrated support system," Business Strategy and the Environment, Wiley Blackwell, vol. 30(5), pages 2441-2452, July.
    14. Qi-Qi CHEN & Jun-Biao ZHANG & Yu HUO, 2016. "A study on research hot-spots and frontiers of agricultural science and technology innovation - visualization analysis based on the Citespace III," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 62(9), pages 429-445.
    15. Fishman, Tomer & Schandl, Heinz & Tanikawa, Hiroki, 2015. "The socio-economic drivers of material stock accumulation in Japan's prefectures," Ecological Economics, Elsevier, vol. 113(C), pages 76-84.
    16. Andrej Kastrin & Dimitar Hristovski, 2021. "Scientometric analysis and knowledge mapping of literature-based discovery (1986–2020)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1415-1451, February.
    17. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    18. Bingke Zhu & Hao Fan & Bingbing Xie & Ran Su & Chaofeng Zhou & Jianping He, 2020. "Mapping the Scientific Research on Healthcare Workers’ Occupational Health: A Bibliometric and Social Network Analysis," IJERPH, MDPI, vol. 17(8), pages 1-22, April.
    19. Francisco Díez-Martín & Alicia Blanco-González & Camilo Prado-Román, 2021. "The intellectual structure of organizational legitimacy research: a co-citation analysis in business journals," Review of Managerial Science, Springer, vol. 15(4), pages 1007-1043, May.
    20. Keisuke Yoshida & Keijiro Okuoka & Alessio Miatto & Liselotte Schebek & Hiroki Tanikawa, 2019. "Estimation of Mining and Landfilling Activities with Associated Overburden through Satellite Data: Germany 2000–2010," Resources, MDPI, vol. 8(3), pages 1-17, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:26:y:2022:i:2:p:462-476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.