IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v190y2017icp891-901.html
   My bibliography  Save this article

Prospective analysis of energy security: A practical life-cycle approach focused on renewable power generation and oriented towards policy-makers

Author

Listed:
  • García-Gusano, Diego
  • Iribarren, Diego
  • Garraín, Daniel

Abstract

Energy security is a wide-ranging term to encompass issues such as security of supply, reliability of infrastructures, affordability and environmental friendliness. This article develops a robust indicator – the Renewable Energy Security Index, RESI – to enrich the body of knowledge associated with the presence of renewable energy technologies within national electricity production mixes. RESI is built by combining environmental life cycle assessment and techno-economic energy systems modelling. Spain and Norway are used as illustrative case studies for the prospective analysis of power generation from an energy security standpoint. In the Spanish case, with a diversified electricity production mix and a growing presence of renewable technologies, RESI favourably “evolves” from 0.36 at present to 0.65 in 2050 in a business-as-usual scenario, reaching higher values in a highly-restricted CO2 scenario. The Norwegian case study attains RESI values similar to 1 due to the leading role of renewable electricity (mainly hydropower) regarding both satisfaction of national demand and exportation of electricity surplus. A widespread use of RESI as a quantifiable energy security index of national power generation sectors is found to be feasible and practical for both analysts and energy policy-makers, covering a significant number of energy security aspects.

Suggested Citation

  • García-Gusano, Diego & Iribarren, Diego & Garraín, Daniel, 2017. "Prospective analysis of energy security: A practical life-cycle approach focused on renewable power generation and oriented towards policy-makers," Applied Energy, Elsevier, vol. 190(C), pages 891-901.
  • Handle: RePEc:eee:appene:v:190:y:2017:i:c:p:891-901
    DOI: 10.1016/j.apenergy.2017.01.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917300120
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.01.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martchamadol, Jutamanee & Kumar, S., 2013. "An aggregated energy security performance indicator," Applied Energy, Elsevier, vol. 103(C), pages 653-670.
    2. Böhringer, Christoph & Bortolamedi, Markus, 2015. "Sense and no(n)-sense of energy security indicators," Ecological Economics, Elsevier, vol. 119(C), pages 359-371.
    3. Johansson, Bengt, 2013. "Security aspects of future renewable energy systems–A short overview," Energy, Elsevier, vol. 61(C), pages 598-605.
    4. Menten, Fabio & Tchung-Ming, Stéphane & Lorne, Daphné & Bouvart, Frédérique, 2015. "Lessons from the use of a long-term energy model for consequential life cycle assessment: The BTL case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 942-960.
    5. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    6. Cherp, Aleh & Jewell, Jessica, 2014. "The concept of energy security: Beyond the four As," Energy Policy, Elsevier, vol. 75(C), pages 415-421.
    7. Kruyt, Bert & van Vuuren, D.P. & de Vries, H.J.M. & Groenenberg, H., 2009. "Indicators for energy security," Energy Policy, Elsevier, vol. 37(6), pages 2166-2181, June.
    8. Badea, Anca Costescu & Rocco S., Claudio M. & Tarantola, Stefano & Bolado, Ricardo, 2011. "Composite indicators for security of energy supply using ordered weighted averaging," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 651-662.
    9. Portugal-Pereira, Joana & Esteban, Miguel, 2014. "Implications of paradigm shift in Japan’s electricity security of supply: A multi-dimensional indicator assessment," Applied Energy, Elsevier, vol. 123(C), pages 424-434.
    10. Lind, Arne & Rosenberg, Eva & Seljom, Pernille & Espegren, Kari & Fidje, Audun & Lindberg, Karen, 2013. "Analysis of the EU renewable energy directive by a techno-economic optimisation model," Energy Policy, Elsevier, vol. 60(C), pages 364-377.
    11. Gracceva, Francesco & Zeniewski, Peter, 2014. "A systemic approach to assessing energy security in a low-carbon EU energy system," Applied Energy, Elsevier, vol. 123(C), pages 335-348.
    12. Vivoda, Vlado, 2010. "Evaluating energy security in the Asia-Pacific region: A novel methodological approach," Energy Policy, Elsevier, vol. 38(9), pages 5258-5263, September.
    13. Hughes, Larry, 2012. "A generic framework for the description and analysis of energy security in an energy system," Energy Policy, Elsevier, vol. 42(C), pages 221-231.
    14. Collet, Pierre & Flottes, Eglantine & Favre, Alain & Raynal, Ludovic & Pierre, Hélène & Capela, Sandra & Peregrina, Carlos, 2017. "Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology," Applied Energy, Elsevier, vol. 192(C), pages 282-295.
    15. Blum, Helcio & Legey, Luiz F.L., 2012. "The challenging economics of energy security: Ensuring energy benefits in support to sustainable development," Energy Economics, Elsevier, vol. 34(6), pages 1982-1989.
    16. Narula, Kapil & Sudhakara Reddy, B. & Pachauri, Shonali & Mahendra Dev, S., 2017. "Sustainable energy security for India: An assessment of the energy supply sub-system," Energy Policy, Elsevier, vol. 103(C), pages 127-144.
    17. Sovacool, Benjamin K. & Mukherjee, Ishani, 2011. "Conceptualizing and measuring energy security: A synthesized approach," Energy, Elsevier, vol. 36(8), pages 5343-5355.
    18. Narula, Kapil & Reddy, B. Sudhakara, 2016. "A SES (sustainable energy security) index for developing countries," Energy, Elsevier, vol. 94(C), pages 326-343.
    19. Augutis, Juozas & Krikstolaitis, Ricardas & Martisauskas, Linas & Peciulyte, Sigita, 2012. "Energy security level assessment technology," Applied Energy, Elsevier, vol. 97(C), pages 143-149.
    20. Löschel, Andreas & Moslener, Ulf & Rübbelke, Dirk T.G., 2010. "Energy security--concepts and indicators," Energy Policy, Elsevier, vol. 38(4), pages 1607-1608, April.
    21. García-Gusano, Diego & Garraín, Daniel & Dufour, Javier, 2017. "Prospective life cycle assessment of the Spanish electricity production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 21-34.
    22. Howells, Mark & Rogner, Holger & Strachan, Neil & Heaps, Charles & Huntington, Hillard & Kypreos, Socrates & Hughes, Alison & Silveira, Semida & DeCarolis, Joe & Bazillian, Morgan & Roehrl, Alexander, 2011. "OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development," Energy Policy, Elsevier, vol. 39(10), pages 5850-5870, October.
    23. von Hippel, David & Suzuki, Tatsujiro & Williams, James H. & Savage, Timothy & Hayes, Peter, 2011. "Energy security and sustainability in Northeast Asia," Energy Policy, Elsevier, vol. 39(11), pages 6719-6730.
    24. Narula, Kapil & Sudhakara Reddy, B. & Pachauri, Shonali, 2017. "Sustainable Energy Security for India: An assessment of energy demand sub-system," Applied Energy, Elsevier, vol. 186(P2), pages 126-139.
    25. Kapil Narula & B. Sudhakara Reddy & Shonali Pachauri, 2015. "Sustainable energy security for India: An assessment of energy demand sub-system," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2015-013, Indira Gandhi Institute of Development Research, Mumbai, India.
    26. Fátima Lima & Joana Portugal‐Pereira & André F.P. Lucena & Pedro Rochedo & Jorge Cunha & Manuel Lopes Nunes & Alexandre Salem Szklo, 2015. "Analysis of energy security and sustainability in future low carbon scenarios for Brazil," Natural Resources Forum, Blackwell Publishing, vol. 0(3-4), pages 175-190, August.
    27. Good, Nicholas & Martínez Ceseña, Eduardo A. & Zhang, Lingxi & Mancarella, Pierluigi, 2016. "Techno-economic and business case assessment of low carbon technologies in distributed multi-energy systems," Applied Energy, Elsevier, vol. 167(C), pages 158-172.
    28. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    29. Martchamadol, Jutamanee & Kumar, S., 2014. "The Aggregated Energy Security Performance Indicator (AESPI) at national and provincial level," Applied Energy, Elsevier, vol. 127(C), pages 219-238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cox, Emily, 2018. "Assessing long-term energy security: The case of electricity in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2287-2299.
    2. Piotr Kosowski & Katarzyna Kosowska, 2021. "Valuation of Energy Security for Natural Gas—European Example," Energies, MDPI, vol. 14(9), pages 1-19, May.
    3. Shirazi, Masoud, 2022. "Assessing energy trilemma-related policies: The world's large energy user evidence," Energy Policy, Elsevier, vol. 167(C).
    4. Honorata Nyga-Łukaszewska & Tomasz M. Napiórkowski, 2022. "Does Energy Demand Security Affect International Competitiveness? Case of Selected Energy-Exporting OECD Countries," Energies, MDPI, vol. 15(6), pages 1-19, March.
    5. Xiaoxia Gao & Lu Xia & Lin Lu & Yonghua Li, 2019. "Analysis of Hong Kong’s Wind Energy: Power Potential, Development Constraints, and Experiences from Other Countries for Local Wind Energy Promotion Strategies," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
    6. Shirazi, Masoud & Fuinhas, José Alberto, 2023. "Portfolio decisions of primary energy sources and economic complexity: The world's large energy user evidence," Renewable Energy, Elsevier, vol. 202(C), pages 347-361.
    7. Mahmud, M. A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2019. "A strategic impact assessment of hydropower plants in alpine and non-alpine areas of Europe," Applied Energy, Elsevier, vol. 250(C), pages 198-214.
    8. Gutierrez-Garcia, Francisco & Arcos-Vargas, Angel & Gomez-Exposito, Antonio, 2022. "Robustness of electricity systems with nearly 100% share of renewables: A worst-case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    9. Jacek Strojny & Anna Krakowiak-Bal & Jarosław Knaga & Piotr Kacorzyk, 2023. "Energy Security: A Conceptual Overview," Energies, MDPI, vol. 16(13), pages 1-35, June.
    10. Algunaibet, Ibrahim M. & Pozo, Carlos & Galán-Martín, Ángel & Guillén-Gosálbez, Gonzalo, 2019. "Quantifying the cost of leaving the Paris Agreement via the integration of life cycle assessment, energy systems modeling and monetization," Applied Energy, Elsevier, vol. 242(C), pages 588-601.
    11. Zhenyu Zhao & Huijia Yang, 2020. "Regional Security Assessment of Integrated Energy Systems with Renewables in China: A Grid-Connected Perspective," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    12. Mahmud, M.A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2020. "Life-cycle impact assessment of renewable electricity generation systems in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1028-1045.
    13. Zapata, Sebastian & Castaneda, Monica & Franco, Carlos Jaime & Dyner, Isaac, 2019. "Clean and secure power supply: A system dynamics based appraisal," Energy Policy, Elsevier, vol. 131(C), pages 9-21.
    14. De Rosa, Mattia & Gainsford, Kenneth & Pallonetto, Fabiano & Finn, Donal P., 2022. "Diversification, concentration and renewability of the energy supply in the European Union," Energy, Elsevier, vol. 253(C).
    15. Ioannidis, Alexis & Chalvatzis, Konstantinos J. & Li, Xin & Notton, Gilles & Stephanides, Phedeas, 2019. "The case for islands’ energy vulnerability: Electricity supply diversity in 44 global islands," Renewable Energy, Elsevier, vol. 143(C), pages 440-452.
    16. Albers, Ariane & Collet, Pierre & Lorne, Daphné & Benoist, Anthony & Hélias, Arnaud, 2019. "Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France," Applied Energy, Elsevier, vol. 239(C), pages 316-330.
    17. Long, Aoife & Murphy, Jerry D., 2019. "Can green gas certificates allow for the accurate quantification of the energy supply and sustainability of biomethane from a range of sources for renewable heat and or transport?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    18. García-Gusano, Diego & Iribarren, Diego, 2018. "Prospective energy security scenarios in Spain: The future role of renewable power generation technologies and climate change implications," Renewable Energy, Elsevier, vol. 126(C), pages 202-209.
    19. Nolting, Lars & Praktiknjo, Aaron, 2020. "Can we phase-out all of them? Probabilistic assessments of security of electricity supply for the German case," Applied Energy, Elsevier, vol. 263(C).
    20. García-Gusano, Diego & Iribarren, Diego & Dufour, Javier, 2018. "Is coal extension a sensible option for energy planning? A combined energy systems modelling and life cycle assessment approach," Energy Policy, Elsevier, vol. 114(C), pages 413-421.
    21. Mostafa Rezaei & Ali Mostafaeipour & Mojtaba Qolipour & Hamid-Reza Arabnia, 2018. "Hydrogen production using wind energy from sea water: A case study on Southern and Northern coasts of Iran," Energy & Environment, , vol. 29(3), pages 333-357, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Augutis, Juozas & Krikštolaitis, Ričardas & Martišauskas, Linas & Pečiulytė, Sigita & Žutautaitė, Inga, 2017. "Integrated energy security assessment," Energy, Elsevier, vol. 138(C), pages 890-901.
    2. Gong, Xu & Wang, You & Lin, Boqiang, 2021. "Assessing dynamic China’s energy security: Based on functional data analysis," Energy, Elsevier, vol. 217(C).
    3. Zhang, Long & Bai, Wuliyasu & Xiao, Huijuan & Ren, Jingzheng, 2021. "Measuring and improving regional energy security: A methodological framework based on both quantitative and qualitative analysis," Energy, Elsevier, vol. 227(C).
    4. Wang, Deqing & Tian, Sihua & Fang, Lei & Xu, Yan, 2020. "A functional index model for dynamically evaluating China's energy security," Energy Policy, Elsevier, vol. 147(C).
    5. Evgeny Lisin & Wadim Strielkowski & Veronika Chernova & Alena Fomina, 2018. "Assessment of the Territorial Energy Security in the Context of Energy Systems Integration," Energies, MDPI, vol. 11(12), pages 1-14, November.
    6. García-Gusano, Diego & Iribarren, Diego, 2018. "Prospective energy security scenarios in Spain: The future role of renewable power generation technologies and climate change implications," Renewable Energy, Elsevier, vol. 126(C), pages 202-209.
    7. Wang, Qiang & Zhou, Kan, 2017. "A framework for evaluating global national energy security," Applied Energy, Elsevier, vol. 188(C), pages 19-31.
    8. Zhenyu Zhao & Huijia Yang, 2020. "Regional Security Assessment of Integrated Energy Systems with Renewables in China: A Grid-Connected Perspective," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    9. Liu, Litao & Cao, Zhi & Liu, Xiaojie & Shi, Lei & Cheng, Shengkui & Liu, Gang, 2020. "Oil security revisited: An assessment based on complex network analysis," Energy, Elsevier, vol. 194(C).
    10. Zaman, Rafia & Brudermann, Thomas, 2018. "Energy governance in the context of energy service security: A qualitative assessment of the electricity system in Bangladesh," Applied Energy, Elsevier, vol. 223(C), pages 443-456.
    11. Tomasz Rokicki & Aleksandra Perkowska, 2021. "Diversity and Changes in the Energy Balance in EU Countries," Energies, MDPI, vol. 14(4), pages 1-19, February.
    12. Debin Fang & Shanshan Shi & Qian Yu, 2018. "Evaluation of Sustainable Energy Security and an Empirical Analysis of China," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    13. Karatayev, Marat & Hall, Stephen, 2020. "Establishing and comparing energy security trends in resource-rich exporting nations (Russia and the Caspian Sea region)," Resources Policy, Elsevier, vol. 68(C).
    14. Narula, Kapil & Reddy, B. Sudhakara, 2016. "A SES (sustainable energy security) index for developing countries," Energy, Elsevier, vol. 94(C), pages 326-343.
    15. Hancock, Linda & Ralph, Natalie, 2021. "A framework for assessing fossil fuel ‘retrofit’ hydrogen exports: Security-justice implications of Australia’s coal-generated hydrogen exports to Japan," Energy, Elsevier, vol. 223(C).
    16. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    17. Zhu, Bo & Deng, Yuanyue & Lin, Renda & Hu, Xin & Chen, Pingshe, 2022. "Energy security: Does systemic risk spillover matter? Evidence from China," Energy Economics, Elsevier, vol. 114(C).
    18. Thauan Santos & Amaro Olímpio Pereira Júnior & Emilio Lèbre La Rovere, 2017. "Evaluating Energy Policies through the Use of a Hybrid Quantitative Indicator-Based Approach: The Case of Mercosur," Energies, MDPI, vol. 10(12), pages 1-15, December.
    19. Abdullah, Fahad Bin & Iqbal, Rizwan & Hyder, Syed Irfan & Jawaid, Mohammad, 2020. "Energy security indicators for Pakistan: An integrated approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Herie Park & Sungwoo Bae, 2021. "Quantitative Assessment of Energy Supply Security: Korea Case Study," Sustainability, MDPI, vol. 13(4), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:190:y:2017:i:c:p:891-901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.