IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v173y2019icp504-518.html
   My bibliography  Save this article

From plot to scale: ex-ante assessment of conservation agriculture in Zambia

Author

Listed:
  • Komarek, Adam M.
  • Kwon, Hoyoung
  • Haile, Beliyou
  • Thierfelder, Christian
  • Mutenje, Munyaradzi J.
  • Azzarri, Carlo

Abstract

This study combined bottom-up and top-down approaches to assess the ex-ante effects of conservation agriculture (CA)-based systems in Zambia considering both biophysical and economic factors and prevailing farm systems characteristics. For continuous maize cropping we compared a CA-based system of no-tillage with crop residue retention to a control system of conventional tillage with crop residue removal. First, we simulated yield effects that were calibrated and evaluated against multiple datasets, including on-farm agronomic trials from two seasons and six sites. Next, we extrapolated our simulations to all maize-growing areas in Zambia using gridded climate and soil datasets. Then simulated yields (in kg ha−1) were combined with economic data from a nationally-representative household survey to construct economic indicators including benefit-cost ratios (based on gross benefits and variable costs both in $ ha−1) that captured the implicit value of crop residues and labor demands. The field scale (per ha) indicators were scaled out using harvested areas as an expansion factor. All indicators were calculated over 3-, 10-, and 20-year simulation periods using an interpolated sequence of historical climate data. Finally, we conducted a spatial farm typology analysis to help understand the spatial variation in our field-scale indicators and provide insights into trade-offs and the suitability of CA-based systems for farmers. Average changes in yield from using CA-based systems (compared with the control) at the district scale ranged from −37% to 70% (average 33%), with a similar range of changes in benefit-cost ratios once economic factors were included, in addition to intra-district yield variability. Combining the changes in benefit-cost ratios with maize harvested area resulted in an average annual change in district-scale net benefit ranging from US $ − 3.9 to US $9.9 million (with an average of US $1.1 million). The heterogeneity in biophysical and economic factors gave a ranking of provinces different according to biophysical or economic indicators, reinforcing the importance of coupling biophysical and economic approaches. The spatial farm typology analysis highlighted the specific contexts of farmers relevant to the suitability of CA, such as their mineral fertilizer applications rates, ownership of livestock, and prevailing soil texture and rainfall.

Suggested Citation

  • Komarek, Adam M. & Kwon, Hoyoung & Haile, Beliyou & Thierfelder, Christian & Mutenje, Munyaradzi J. & Azzarri, Carlo, 2019. "From plot to scale: ex-ante assessment of conservation agriculture in Zambia," Agricultural Systems, Elsevier, vol. 173(C), pages 504-518.
  • Handle: RePEc:eee:agisys:v:173:y:2019:i:c:p:504-518
    DOI: 10.1016/j.agsy.2019.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X18311156
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2019.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lynam, John K. & Herdt, Robert W., 1989. "Sense and sustainability: Sustainability as an objective in international agricultural research," Agricultural Economics, Blackwell, vol. 3(4), pages 381-398, December.
    2. Zulu-Mbata, Olipa & Chapoto, Antony & Hichaambwa, Munguzwe, 2016. "Determinants of Conservation Agriculture Adoption among Zambian Smallholder Farmers," Food Security Collaborative Working Papers 251855, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    3. Komarek, Adam M. & Li, LingLing & Bellotti, William D., 2015. "Whole-farm economic and risk effects of conservation agriculture in a crop-livestock system in western China," Agricultural Systems, Elsevier, vol. 137(C), pages 220-226.
    4. Berazneva, Julia & Lee, David R. & Place, Frank & Jakubson, George, 2018. "Allocation and Valuation of Smallholder Maize Residues in Western Kenya," Ecological Economics, Elsevier, vol. 152(C), pages 172-182.
    5. Jones, Peter G. & Thornton, Philip K., 2013. "Generating downscaled weather data from a suite of climate models for agricultural modelling applications," Agricultural Systems, Elsevier, vol. 114(C), pages 1-5.
    6. Ngoma, Hambulo & Mason, Nicole M. & Sitko, Nicholas, 2015. "Does Minimum Tillage with Planting Basins or Ripping Raise Maize Yields? Meso-panel Data Evidence from Zambia," Food Security Collaborative Working Papers 198701, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    7. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    8. Lopez-Ridaura, Santiago & Frelat, Romain & van Wijk, Mark T. & Valbuena, Diego & Krupnik, Timothy J. & Jat, M.L., 2018. "Climate smart agriculture, farm household typologies and food security," Agricultural Systems, Elsevier, vol. 159(C), pages 57-68.
    9. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    10. Hammond, James & van Wijk, Mark T. & Smajgl, Alex & Ward, John & Pagella, Tim & Xu, Jianchu & Su, Yufang & Yi, Zhuangfang & Harrison, Rhett D., 2017. "Farm types and farmer motivations to adapt: Implications for design of sustainable agricultural interventions in the rubber plantations of South West China," Agricultural Systems, Elsevier, vol. 154(C), pages 1-12.
    11. Oscar Cacho & Adriana Paolantonio & Giacomo Branca & Romina Cavatassi & Aslihan Arslan & Leslie Lipper, 2018. "Identifying Strategies to Enhance the Resilience of Smallholder Farming Systems: Evidence from Zambia," Natural Resource Management and Policy, in: Leslie Lipper & Nancy McCarthy & David Zilberman & Solomon Asfaw & Giacomo Branca (ed.), Climate Smart Agriculture, pages 425-441, Springer.
    12. Douthwaite, Boru & Kuby, Thomas & van de Fliert, Elske & Schulz, Steffen, 2003. "Impact pathway evaluation: an approach for achieving and attributing impact in complex systems," Agricultural Systems, Elsevier, vol. 78(2), pages 243-265, November.
    13. Deon Filmer & Lant Pritchett, 2001. "Estimating Wealth Effects Without Expenditure Data—Or Tears: An Application To Educational Enrollments In States Of India," Demography, Springer;Population Association of America (PAA), vol. 38(1), pages 115-132, February.
    14. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    15. van Dijk, Michiel & Morley, Tom & Jongeneel, Roel & van Ittersum, Martin & Reidsma, Pytrik & Ruben, Ruerd, 2017. "Disentangling agronomic and economic yield gaps: An integrated framework and application," Agricultural Systems, Elsevier, vol. 154(C), pages 90-99.
    16. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    17. Valbuena, Diego & Tui, Sabine Homann-Kee & Erenstein, Olaf & Teufel, Nils & Duncan, Alan & Abdoulaye, Tahirou & Swain, Braja & Mekonnen, Kindu & Germaine, Ibro & Gérard, Bruno, 2015. "Identifying determinants, pressures and trade-offs of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia," Agricultural Systems, Elsevier, vol. 134(C), pages 107-118.
    18. Desiere, Sam & Jolliffe, Dean, 2018. "Land productivity and plot size: Is measurement error driving the inverse relationship?," Journal of Development Economics, Elsevier, vol. 130(C), pages 84-98.
    19. William J. Burke & Thom. S. Jayne & J. Roy Black, 2017. "Factors explaining the low and variable profitability of fertilizer application to maize in Zambia," Agricultural Economics, International Association of Agricultural Economists, vol. 48(1), pages 115-126, January.
    20. Stéphanie Alvarez & Carl J Timler & Mirja Michalscheck & Wim Paas & Katrien Descheemaeker & Pablo Tittonell & Jens A Andersson & Jeroen C J Groot, 2018. "Capturing farm diversity with hypothesis-based typologies: An innovative methodological framework for farming system typology development," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-24, May.
    21. Blazy, Jean-Marc & Ozier-Lafontaine, Harry & Doré, Thierry & Thomas, Alban & Wery, Jacques, 2009. "A methodological framework that accounts for farm diversity in the prototyping of crop management systems. Application to banana-based systems in Guadeloupe," Agricultural Systems, Elsevier, vol. 101(1-2), pages 30-41, June.
    22. Yang, J.M. & Yang, J.Y. & Liu, S. & Hoogenboom, G., 2014. "An evaluation of the statistical methods for testing the performance of crop models with observed data," Agricultural Systems, Elsevier, vol. 127(C), pages 81-89.
    23. Nyagumbo, Isaiah & Mkuhlani, Siyabusa & Mupangwa, Walter & Rodriguez, Daniel, 2017. "Planting date and yield benefits from conservation agriculture practices across Southern Africa," Agricultural Systems, Elsevier, vol. 150(C), pages 21-33.
    24. Christian Thierfelder & Pauline Chivenge & Walter Mupangwa & Todd S. Rosenstock & Christine Lamanna & Joseph X. Eyre, 2017. "How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(3), pages 537-560, June.
    25. Kobrich, C. & Rehman, T. & Khan, M., 2003. "Typification of farming systems for constructing representative farm models: two illustrations of the application of multi-variate analyses in Chile and Pakistan," Agricultural Systems, Elsevier, vol. 76(1), pages 141-157, April.
    26. Brown, Brendan & Nuberg, Ian & Llewellyn, Rick, 2017. "Stepwise frameworks for understanding the utilisation of conservation agriculture in Africa," Agricultural Systems, Elsevier, vol. 153(C), pages 11-22.
    27. John K. Lynam & Robert W. Herdt, 1989. "Sense and Sustainability: Sustainability as an Objective in International Agricultural Research," Agricultural Economics, International Association of Agricultural Economists, vol. 3(4), pages 381-398, December.
    28. You, Liangzhi & Wood, Stanley & Wood-Sichra, Ulrike, 2009. "Generating plausible crop distribution maps for Sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach," Agricultural Systems, Elsevier, vol. 99(2-3), pages 126-140, February.
    29. Rigolot, C. & de Voil, P. & Douxchamps, S. & Prestwidge, D. & Van Wijk, M. & Thornton, P.K. & Rodriguez, D. & Henderson, B. & Medina, D. & Herrero, M., 2017. "Interactions between intervention packages, climatic risk, climate change and food security in mixed crop–livestock systems in Burkina Faso," Agricultural Systems, Elsevier, vol. 151(C), pages 217-224.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdul Nafeo Abdulai & Awal Abdul-Rahaman & Gazali Issahaku, 2021. "Adoption and diffusion of conservation agriculture technology in Zambia: the role of social and institutional networks," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(4), pages 761-780, October.
    2. Komarek, Adam M. & Thierfelder, Christian & Steward, Peter R., 2021. "Conservation agriculture improves adaptive capacity of cropping systems to climate stress in Malawi," Agricultural Systems, Elsevier, vol. 190(C).
    3. Abadi, Bijan & Yadollahi, Arash & Bybordi, Ahmad & Rahmati, Mehdi, 2020. "The discrimination of adopters and non-adopters of conservation agricultural initiatives in northwest Iran: Attitudinal, soil testing, and topographical modules," Land Use Policy, Elsevier, vol. 95(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hammond, Jim & Rosenblum, Nathaniel & Breseman, Dana & Gorman, Léo & Manners, Rhys & van Wijk, Mark T. & Sibomana, Milindi & Remans, Roseline & Vanlauwe, Bernard & Schut, Marc, 2020. "Towards actionable farm typologies: Scaling adoption of agricultural inputs in Rwanda," Agricultural Systems, Elsevier, vol. 183(C).
    2. Pienaar, Louw & Traub, Lulama, 2015. "Understanding the smallholder farmer in South Africa: Towards a sustainable livelihoods classification," 2015 Conference, August 9-14, 2015, Milan, Italy 212633, International Association of Agricultural Economists.
    3. Ngoma, Hambulo & Pelletier, Johanne & Mulenga, Brian P. & Subakanya, Mitelo, 2021. "Climate-smart agriculture, cropland expansion and deforestation in Zambia: Linkages, processes and drivers," Land Use Policy, Elsevier, vol. 107(C).
    4. Mercedes Beltrán-Esteve & Andrés J. Picazo-Tadeo & Ernest Reig-Martínez, 2012. "What makes a citrus farmer go organic? Empirical evidence from Spanish citrus farming," Working Papers 1205, Department of Applied Economics II, Universidad de Valencia.
    5. Assogba, Gildas G.C. & Adam, Myriam & Berre, David & Descheemaeker, Katrien, 2022. "Managing biomass in semi-arid Burkina Faso: Strategies and levers for better crop and livestock production in contrasted farm systems," Agricultural Systems, Elsevier, vol. 201(C).
    6. Paschalis Arvanitidis & Athina Economou & Christos Kollias, 2016. "Terrorism’s effects on social capital in European countries," Public Choice, Springer, vol. 169(3), pages 231-250, December.
    7. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    8. William J. Burke & Stephen N. Morgan & Thelma Namonje & Milu Muyanga & Nicole M. Mason, 2023. "Beyond the “inverse relationship”: Area mismeasurement may affect actual productivity, not just how we understand it," Agricultural Economics, International Association of Agricultural Economists, vol. 54(4), pages 557-569, July.
    9. Ramani, Shyama V. & Thutupalli, Ajay, 2015. "Emergence of controversy in technology transitions: Green Revolution and Bt cotton in India," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 198-212.
    10. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    11. Chaoran Chen & Diego Restuccia & Raül Santaeulàlia-Llopis, 2023. "Land Misallocation and Productivity," American Economic Journal: Macroeconomics, American Economic Association, vol. 15(2), pages 441-465, April.
    12. Stylianou, Andreas & Sdrali, Despina & Apostolopoulos, Constantinos D., 2020. "Capturing the diversity of Mediterranean farming systems prior to their sustainability assessment: The case of Cyprus," Land Use Policy, Elsevier, vol. 96(C).
    13. Kumar, Praduman & Mittal, Surabhi, 2006. "Agricultural Productivity Trends in India: Sustainability Issues," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 19(Conferenc).
    14. Jianxu Liu & Mengjiao Wang & Li Yang & Sanzidur Rahman & Songsak Sriboonchitta, 2020. "Agricultural Productivity Growth and Its Determinants in South and Southeast Asian Countries," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    15. Hampf, Anna C. & Carauta, Marcelo & Latynskiy, Evgeny & Libera, Affonso A.D. & Monteiro, Leonardo & Sentelhas, Paulo & Troost, Christian & Berger, Thomas & Nendel, Claas, 2018. "The biophysical and socio-economic dimension of yield gaps in the southern Amazon – A bio-economic modelling approach," Agricultural Systems, Elsevier, vol. 165(C), pages 1-13.
    16. Kibrom A. Abay & Tesfamicheal Wossen & Jordan Chamberlin, 2023. "Mismeasurement and efficiency estimates: Evidence from smallholder survey data in Africa," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(2), pages 413-434, June.
    17. Franco, Juan Agustín & Gaspar, Paula & Mesias, Francisco Javier, 2012. "Economic analysis of scenarios for the sustainability of extensive livestock farming in Spain under the CAP," Ecological Economics, Elsevier, vol. 74(C), pages 120-129.
    18. So Pyay Thar & Thiagarajah Ramilan & Robert J. Farquharson & Deli Chen, 2021. "Identifying Potential for Decision Support Tools through Farm Systems Typology Analysis Coupled with Participatory Research: A Case for Smallholder Farmers in Myanmar," Agriculture, MDPI, vol. 11(6), pages 1-20, June.
    19. Ester Foppa Pedretti & Kofi Armah Boakye-Yiadom & Elena Valentini & Alessio Ilari & Daniele Duca, 2021. "Life Cycle Assessment of Spinach Produced in Central and Southern Italy," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    20. Byerlee, Derek & Murgai, Rinku, 2001. "Sense and sustainability revisited: the limits of total factor productivity measures of sustainable agricultural systems," Agricultural Economics, Blackwell, vol. 26(3), pages 227-236, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:173:y:2019:i:c:p:504-518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.