IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v42y2025i2d10.1007_s00357-025-09504-7.html
   My bibliography  Save this article

Torus Probabilistic Principal Component Analysis

Author

Listed:
  • Anahita Nodehi

    (Tarbiat Modares University
    Institute for Research in Fundamental Sciences (IPM))

  • Mousa Golalizadeh

    (Tarbiat Modares University
    Institute for Research in Fundamental Sciences (IPM))

  • Mehdi Maadooliat

    (Marquette University)

  • Claudio Agostinelli

    (University of Trento)

Abstract

Analyzing data in non-Euclidean spaces, such as bioinformatics, biology, and geology, where variables represent directions or angles, poses unique challenges. This type of data is known as circular data in univariate cases and can be termed spherical or toroidal in multivariate contexts. In this paper, we introduce a novel extension of probabilistic principal component analysis (PPCA) designed for toroidal (or torus) data, termed torus probabilistic PCA (TPPCA). We provide detailed algorithms for implementing TPPCA and demonstrate its applicability to torus data. To assess the efficacy of TPPCA, we perform comparative analyses using a simulation study and three real datasets. Our findings highlight the advantages and limitations of TPPCA in handling torus data. Furthermore, we propose statistical tests based on likelihood ratio statistics to determine the optimal number of components, enhancing the practical utility of TPPCA for real-world applications.

Suggested Citation

  • Anahita Nodehi & Mousa Golalizadeh & Mehdi Maadooliat & Claudio Agostinelli, 2025. "Torus Probabilistic Principal Component Analysis," Journal of Classification, Springer;The Classification Society, vol. 42(2), pages 435-456, July.
  • Handle: RePEc:spr:jclass:v:42:y:2025:i:2:d:10.1007_s00357-025-09504-7
    DOI: 10.1007/s00357-025-09504-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-025-09504-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-025-09504-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:42:y:2025:i:2:d:10.1007_s00357-025-09504-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.