IDEAS home Printed from https://ideas.repec.org/a/bpj/jtsmet/v2y2010i1n5.html
   My bibliography  Save this article

A Nonlinear IV Likelihood-Based Rank Test for Multivariate Time Series and Long Panels

Author

Listed:
  • Miller J. Isaac

    (University of Missouri)

Abstract

A test for the rank of a vector error correction model (VECM) or panel VECM based on the well-known trace test is proposed. The proposed test employs instrumental variables (IV's) generated by a class of nonlinear functions of the estimated stochastic trends of the VECM under the null. The test improves on the standard trace test by replacing the non-standard critical values with chi-squared critical values. Extending the result to the panel VECM case, the test is robust to cross-sectional correlation of the disturbances. The nonlinear IV rank test also extends earlier research on nonlinear IV unit root tests. However, the optimal instrument in the univariate case is not admissible in the more general multivariate case. The chi-squared result suggests that IV tests may be used to replace limits of other standard tests with integrated time series that are given by nonstandard stochastic integrals, even without a panel with which to pool test statistics.

Suggested Citation

  • Miller J. Isaac, 2010. "A Nonlinear IV Likelihood-Based Rank Test for Multivariate Time Series and Long Panels," Journal of Time Series Econometrics, De Gruyter, vol. 2(1), pages 1-38, September.
  • Handle: RePEc:bpj:jtsmet:v:2:y:2010:i:1:n:5
    as

    Download full text from publisher

    File URL: https://www.degruyter.com/view/j/jtse.2010.2.1/jtse.2010.2.1.1057/jtse.2010.2.1.1057.xml?format=INT
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Shintani, Mototsugu, 2001. "A simple cointegrating rank test without vector autoregression," Journal of Econometrics, Elsevier, vol. 105(2), pages 337-362, December.
    2. Wang, Qiying & Phillips, Peter C.B., 2009. "Asymptotic Theory For Local Time Density Estimation And Nonparametric Cointegrating Regression," Econometric Theory, Cambridge University Press, vol. 25(03), pages 710-738, June.
    3. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    4. Pedroni, Peter, 2004. "Panel Cointegration: Asymptotic And Finite Sample Properties Of Pooled Time Series Tests With An Application To The Ppp Hypothesis," Econometric Theory, Cambridge University Press, vol. 20(03), pages 597-625, June.
    5. Groen, Jan J J & Kleibergen, Frank, 2003. "Likelihood-Based Cointegration Analysis in Panels of Vector Error-Correction Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(2), pages 295-318, April.
    6. Demetrescu Matei, 2009. "Panel Unit Root Testing with Nonlinear Instruments for Infinite-Order Autoregressive Processes," Journal of Time Series Econometrics, De Gruyter, vol. 1(2), pages 1-30, December.
    7. Yoosoon Chang & Wonho Song, 2009. "Testing for Unit Roots in Small Panels with Short-run and Long-run Cross-sectional Dependencies," Review of Economic Studies, Oxford University Press, vol. 76(3), pages 903-935.
    8. So, Beong Soo & Shin, Dong Wan, 1999. "Cauchy Estimators For Autoregressive Processes With Applications To Unit Root Tests And Confidence Intervals," Econometric Theory, Cambridge University Press, vol. 15(02), pages 165-176, April.
    9. P. Jeganathan, 2008. "Limit Theorems for Functionals of Sums that Converge to Fractional Brownian and Stable Motions," Cowles Foundation Discussion Papers 1649, Cowles Foundation for Research in Economics, Yale University.
    10. Osterwald-Lenum, Michael, 1992. "A Note with Quantiles of the Asymptotic Distribution of the Maximum Likelihood Cointegration Rank Test Statistics," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 461-472, August.
    11. Kao, Chihwa, 1999. "Spurious regression and residual-based tests for cointegration in panel data," Journal of Econometrics, Elsevier, vol. 90(1), pages 1-44, May.
    12. Aznar, Antonio & Salvador, Manuel, 2002. "Selecting The Rank Of The Cointegration Space And The Form Of The Intercept Using An Information Criterion," Econometric Theory, Cambridge University Press, vol. 18(04), pages 926-947, August.
    13. Zivot, Eric, 2000. "The Power Of Single Equation Tests For Cointegration When The Cointegrating Vector Is Prespecified," Econometric Theory, Cambridge University Press, vol. 16(03), pages 407-439, June.
    14. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    15. Wang, Zijun & Bessler, David A., 2005. "A Monte Carlo Study On The Selection Of Cointegrating Rank Using Information Criteria," Econometric Theory, Cambridge University Press, vol. 21(03), pages 593-620, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Uwe Hassler & Mehdi Hosseinkouchack, 2016. "Panel Cointegration Testing in the Presence of Linear Time Trends," Econometrics, MDPI, Open Access Journal, vol. 4(4), pages 1-16, November.
    2. Matei Demetrescu & Christoph Hanck & Adina I. Tarcolea, 2014. "Iv-Based Cointegration Testing In Dependent Panels With Time-Varying Variance," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(5), pages 393-406, August.
    3. Antonia Arsova & Deniz Dilan Karaman Oersal, 2013. "Likelihood-based panel cointegration test in the presence of a linear time trend and cross-sectional dependence," Working Paper Series in Economics 280, University of Lüneburg, Institute of Economics.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jtsmet:v:2:y:2010:i:1:n:5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: https://www.degruyter.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.