IDEAS home Printed from
   My bibliography  Save this paper

Limit Theorems for Functionals of Sums that Converge to Fractional Brownian and Stable Motions


  • P. Jeganathan

    (Indian Statistical Institute)


Too technical to post, see paper.

Suggested Citation

  • P. Jeganathan, 2008. "Limit Theorems for Functionals of Sums that Converge to Fractional Brownian and Stable Motions," Cowles Foundation Discussion Papers 1649, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1649

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ioannis Kasparis & Peter C. B. Phillips & Tassos Magdalinos, 2014. "Nonlinearity Induced Weak Instrumentation," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 676-712, August.
    2. Jiti Gao & Peter C.B. Phillips, 2011. "Semiparametric Estimation in Multivariate Nonstationary Time Series Models," Monash Econometrics and Business Statistics Working Papers 17/11, Monash University, Department of Econometrics and Business Statistics.
    3. Qiying Wang & Peter C. B. Phillips, 2009. "Asymptotic Theory for Zero Energy Density Estimation with Nonparametric Regression Applications," Cowles Foundation Discussion Papers 1687, Cowles Foundation for Research in Economics, Yale University.
    4. Miller J. Isaac, 2010. "A Nonlinear IV Likelihood-Based Rank Test for Multivariate Time Series and Long Panels," Journal of Time Series Econometrics, De Gruyter, vol. 2(1), pages 1-38, September.
    5. Chan, Nigel & Wang, Qiying, 2015. "Nonlinear regressions with nonstationary time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 182-195.

    More about this item


    Fractional ARIMA; Sums of linear process; Nonlinear functionals; Limit theorems; Local time; Fractional Brownian and Stable motions;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1649. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.