IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v15y2019i2p129-140n2.html
   My bibliography  Save this article

Seeding the UEFA Champions League participants: evaluation of the reforms

Author

Listed:
  • Dagaev Dmitry

    () (National Research University Higher School of Economics, Myasnitskaya Street 20, Moscow 101000, Russian Federation)

  • Rudyak Vladimir Yu.

    () (Lomonosov Moscow State University, Moscow, Russian Federation)

Abstract

We evaluate the sporting effects of the seeding system reforms in the Champions League, the major football club tournament organized by the Union of European Football Associations (UEFA). Before the 2015–2016 season, the teams were seeded in the group stage by their ratings. Starting from the 2015–2016 season, national champions of the Top-7 associations are seeded in the first pot, whereas other teams are seeded by their rating as before. Taking effect from the season 2018–2019, the team’s rating no longer includes 20% of the rating of the association that the team represents. Using the prediction model, we simulate the whole UEFA season and obtain numerical estimates for competitiveness changes in the UEFA tournaments caused by these seeding reforms. We report only marginal changes in tournament metrics that characterize ability of the tournament to select the best teams and competitive balance. Probability of changes in the UEFA national association ranking does not exceed several percent for any association.

Suggested Citation

  • Dagaev Dmitry & Rudyak Vladimir Yu., 2019. "Seeding the UEFA Champions League participants: evaluation of the reforms," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(2), pages 129-140, June.
  • Handle: RePEc:bpj:jqsprt:v:15:y:2019:i:2:p:129-140:n:2
    as

    Download full text from publisher

    File URL: https://www.degruyter.com/view/j/jqas.2019.15.issue-2/jqas-2017-0130/jqas-2017-0130.xml?format=INT
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Scarf, Philip & Yusof, Muhammad Mat & Bilbao, Mark, 2009. "A numerical study of designs for sporting contests," European Journal of Operational Research, Elsevier, vol. 198(1), pages 190-198, October.
    2. Koning, Ruud H. & Koolhaas, Michael & Renes, Gusta & Ridder, Geert, 2003. "A simulation model for football championships," European Journal of Operational Research, Elsevier, vol. 148(2), pages 268-276, July.
    3. Siem Jan Koopman & Rutger Lit, 2015. "A dynamic bivariate Poisson model for analysing and forecasting match results in the English Premier League," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 167-186, January.
    4. Zopounidis, Constantin & Doumpos, Michael, 2002. "Multicriteria classification and sorting methods: A literature review," European Journal of Operational Research, Elsevier, vol. 138(2), pages 229-246, April.
    5. Ryvkin, Dmitry, 2011. "The optimal sorting of players in contests between groups," Games and Economic Behavior, Elsevier, vol. 73(2), pages 564-572.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Corona, Francisco & Forrest, David & Tena, J.D. & Wiper, Michael, 2019. "Bayesian forecasting of UEFA Champions League under alternative seeding regimes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 722-732.

    More about this item

    Keywords

    competitive balance; Monte-Carlo simulations; seeding; tournament; UEFA Champions League;

    JEL classification:

    • Z20 - Other Special Topics - - Sports Economics - - - General
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:15:y:2019:i:2:p:129-140:n:2. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: https://www.degruyter.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.