IDEAS home Printed from https://ideas.repec.org/a/ags/afjare/307621.html
   My bibliography  Save this article

Does crop diversification reduce downside risk of external maize yield-enhancing technology? Evidence from Ethiopia

Author

Listed:
  • Jaleta, Moti
  • Merenya, Paswel
  • Beshir, Bedru
  • Erenstein, Olaf

Abstract

Unexpectedly lower yield outcomes (downside risks) challenge farmers’ use of external inputs that can enhance crop productivity. Using household-level panel data collected from Ethiopia, we estimated the effects of crop diversification through maize-legume intercropping/rotation on maize yield distribution and downside risk. Results from endogenous switching regression models and quintile moment approaches show that plots with maize-legume intercropping/rotation have the highest average maize yield. Such crop diversification reduces the downside risk in maize yield more when applied to plots receiving external inputs. The results imply that, in addition to the technical support around external input use in smallholder maize production, Ethiopia’s agricultural extension may also need to give due emphasis to both spatial and temporal crop diversification practices. This could enhance crop productivity further and reduce the potential downside risks typically hampering smallholders’ external input use in maize production.

Suggested Citation

  • Jaleta, Moti & Merenya, Paswel & Beshir, Bedru & Erenstein, Olaf, 2020. "Does crop diversification reduce downside risk of external maize yield-enhancing technology? Evidence from Ethiopia," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 15(2), June.
  • Handle: RePEc:ags:afjare:307621
    DOI: 10.22004/ag.econ.307621
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/307621/files/2.-Jaleta-et-al.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.307621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Barrios, Salvador & Ouattara, Bazoumana & Strobl, Eric, 2008. "The impact of climatic change on agricultural production: Is it different for Africa?," Food Policy, Elsevier, vol. 33(4), pages 287-298, August.
    2. Alene, Arega D. & Poonyth, Daneswar & Hassan, Rashid M., 2000. "Determinants of adoption and intensity of use of improved maize varieties in the Central Highlands of Ethiopia: A Tobit analysis," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 39(4), pages 1-11, December.
    3. Jean‐Paul Chavas & Salvatore Di Falco, 2012. "On the Role of Risk Versus Economies of Scope in Farm Diversification With an Application to Ethiopian Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 63(1), pages 25-55, February.
    4. Tsedeke Abate & Bekele Shiferaw & Abebe Menkir & Dagne Wegary & Yilma Kebede & Kindie Tesfaye & Menale Kassie & Gezahegn Bogale & Berhanu Tadesse & Tolera Keno, 2015. "Factors that transformed maize productivity in Ethiopia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 7(5), pages 965-981, October.
    5. Kwansoo Kim & Jean-Paul Chavas & Bradford Barham & Jeremy Foltz, 2014. "Editor's choice Rice, irrigation and downside risk: a quantile analysis of risk exposure and mitigation on Korean farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(5), pages 775-815.
    6. Menale Kassie & Hailemariam Teklewold & Paswel Marenya & Moti Jaleta & Olaf Erenstein, 2015. "Production Risks and Food Security under Alternative Technology Choices in Malawi: Application of a Multinomial Endogenous Switching Regression," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(3), pages 640-659, September.
    7. Million Tadesse & Bekele Shiferaw & Olaf Erenstein, 2015. "Weather index insurance for managing drought risk in smallholder agriculture: lessons and policy implications for sub-Saharan Africa," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 3(1), pages 1-21, December.
    8. Fufa, B. & Hassan, Rashid M., 2006. "Determinants of fertilizer use on maize in Eastern Ethiopia: A weighted endogenous sampling analysis of the extent and intensity of adoption," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 45(1), pages 1-12, March.
    9. Kim, Kwansoo & Chavas, Jean-Paul, 2003. "Technological change and risk management: an application to the economics of corn production," Agricultural Economics, Blackwell, vol. 29(2), pages 125-142, October.
    10. Salvatore Di Falco & Jean-Paul Chavas, 2006. "Crop genetic diversity, farm productivity and the management of environmental risk in rainfed agriculture," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 33(3), pages 289-314, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Wanglin & Vatsa, Puneet & Zheng, Hongyun & Rahut, Dil Bahadur, 2022. "Nonfarm employment and consumption diversification in rural China," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 582-598.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaleta, M. & Marenya, P. & Beshir, B., 2018. "Does crop diversification reduce downside risk in maize yield enhancing investments? Evidence from Ethiopia using panel data," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277217, International Association of Agricultural Economists.
    2. Ayenew, Habtamu Yesigat & Sauer, Johannes & Abate-Kassa, Getachew, 2016. "Cost of Risk Exposure, Farm Disinvestment and Adaptation to Climate Uncertainties: The Case of Arable Farms in the EU," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235595, Agricultural and Applied Economics Association.
    3. Antonelli, Chiara & Coromaldi, Manuela & Pallante, Giacomo, 2022. "Crop and income diversification for rural adaptation: Insights from Ugandan panel data," Ecological Economics, Elsevier, vol. 195(C).
    4. Mintewab Bezabih & Finn Tarp & Hailemariam Teklewold & Alemu Mekonnen & Tagel G/Hiwot, 2023. "Traditional versus improved varieties of seed: Is there a trade-off between productivity and risk?," DERG working paper series 23-21, University of Copenhagen. Department of Economics. Development Economics Research Group (DERG).
    5. Marie Lassalas & Sabine Duvaleix & Laure Latruffe, 2024. "The technical and economic effects of biodiversity standards on wheat production," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 51(2), pages 275-308.
    6. Lefebvre, Marianne & Midler, Estelle & Bontems, Philippe, 2020. "Adoption of environmentally-friendly agricultural practices with background risk: experimental evidence," TSE Working Papers 20-1079, Toulouse School of Economics (TSE).
    7. Banchayehu Tessema Assefa & Jordan Chamberlin & Martin K. van Ittersum & Pytrik Reidsma, 2021. "Usage and Impacts of Technologies and Management Practices in Ethiopian Smallholder Maize Production," Agriculture, MDPI, vol. 11(10), pages 1-19, September.
    8. Kedar Kulkarni & David Rossi, 2023. "Determinants of downside risk exposure: An analysis of Korean rice farms using partial and quantile moments," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(3), pages 1356-1373, September.
    9. Olaf Erenstein & Moti Jaleta & Kai Sonder & Khondoker Mottaleb & B.M. Prasanna, 2022. "Global maize production, consumption and trade: trends and R&D implications," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(5), pages 1295-1319, October.
    10. Bozzola, Martina, 2014. "Adaptation to Climate Change: Farmers' Risk Preferences and the Role of Irrigation," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182771, European Association of Agricultural Economists.
    11. Jikun Huang & Yangjie Wang & Jinxia Wang, 2015. "Farmers' Adaptation to Extreme Weather Events through Farm Management and Its Impacts on the Mean and Risk of Rice Yield in China," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(2), pages 602-617.
    12. Asfaw, Solomon & Pallante, Giacomo & Palma, Alessandro, 2020. "Distributional impacts of soil erosion on agricultural productivity and welfare in Malawi," Ecological Economics, Elsevier, vol. 177(C).
    13. Mukasa Adamon N., 2016. "Working Paper 233 - Technology Adoption and Risk Exposure among Smallholder Farmers: Panel Data Evidence from Tanzania and Uganda," Working Paper Series 2328, African Development Bank.
    14. Mauro Vigani & Jonas Kathage, 2019. "To Risk or Not to Risk? Risk Management and Farm Productivity," American Journal of Agricultural Economics, John Wiley & Sons, vol. 101(5), pages 1432-1454, October.
    15. Wenjian He & Yiyang Liu & Huaping Sun & Farhad Taghizadeh-Hesary, 2020. "How Does Climate Change Affect Rice Yield in China?," Agriculture, MDPI, vol. 10(10), pages 1-16, September.
    16. Ayenew, H.Y. & Sauer, J. & Abate-Kassa, G., 2016. "Exposure to Risk and Risk Management in Smallholder Agriculture," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 51, March.
    17. Collins-Sowah, Peron A. & Henning, Christian H. C. A., 2019. "Risk management and its implications on household incomes," Working Papers of Agricultural Policy WP2019-05, University of Kiel, Department of Agricultural Economics, Chair of Agricultural Policy.
    18. Jean-Paul Chavas, 2008. "On the economics of agricultural production ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(4), pages 365-380, December.
    19. Mukasa, Adamon N., 2018. "Technology adoption and risk exposure among smallholder farmers: Panel data evidence from Tanzania and Uganda," World Development, Elsevier, vol. 105(C), pages 299-309.
    20. Tobias Dalhaus & Barry J Barnett & Robert Finger, 2020. "Behavioral weather insurance: Applying cumulative prospect theory to agricultural insurance design under narrow framing," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-25, May.

    More about this item

    Keywords

    Crop Production/Industries;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:afjare:307621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaaeaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.