IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i4d10.1007_s10668-022-02179-9.html
   My bibliography  Save this article

Green preferences

Author

Listed:
  • Francesco Busato

    (University of Naples Parthenope)

  • Bruno Chiarini

    (University of Naples Parthenope)

  • Gianluigi Cisco

    (University of Naples “Parthenope”)

  • Maria Ferrara

    (University of Naples Parthenope)

Abstract

This paper studies how interaction between economic decision-making and environmental awareness affects US business cycle and GHG emissions in a two-sector DSGE model. We emphasize the mechanisms that relate carbon emissions dynamics, consumer behavior, and environmental awareness in a framework incorporating two classes of goods (i.e., “clean” and “dirty”). This paper offers three main results. First, green consumption preferences play a key role in emissions reduction when they internalize emissions concentrations. Second, a green preference shock is the second source of fluctuation in many sectoral variables and stabilizes the business cycle. Third, a pollutant supply shock leads to sustainable consumption procyclicality documented in US data, only if households are environmentally aware.

Suggested Citation

  • Francesco Busato & Bruno Chiarini & Gianluigi Cisco & Maria Ferrara, 2023. "Green preferences," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3211-3253, April.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:4:d:10.1007_s10668-022-02179-9
    DOI: 10.1007/s10668-022-02179-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02179-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02179-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ren & Hou, Jie & Jiang, Zhujun, 2021. "Environmental policies with financing constraints in China," Energy Economics, Elsevier, vol. 94(C).
    2. Gronwald, Marc & Hintermann, Beat (ed.), 2015. "Emissions Trading as a Policy Instrument: Evaluation and Prospects," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262029286, December.
    3. Ciarli, Tommaso & Savona, Maria, 2019. "Modelling the Evolution of Economic Structure and Climate Change: A Review," Ecological Economics, Elsevier, vol. 158(C), pages 51-64.
    4. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    5. Faria, João Ricardo & McAdam, Peter, 2018. "The green golden rule: Habit and anticipation of future consumption," Economics Letters, Elsevier, vol. 172(C), pages 131-133.
    6. Jody Overland & Christopher D. Carroll & David N. Weil, 2000. "Saving and Growth with Habit Formation," American Economic Review, American Economic Association, vol. 90(3), pages 341-355, June.
    7. Carroll, Christopher D & Overland, Jody & Weil, David N, 1997. "Comparison Utility in a Growth Model," Journal of Economic Growth, Springer, vol. 2(4), pages 339-367, December.
    8. Doda, Baran, 2014. "Evidence on business cycles and CO2 emissions," Journal of Macroeconomics, Elsevier, vol. 40(C), pages 214-227.
    9. Chan, Ying Tung, 2020. "Optimal emissions tax rates under habit formation and social comparisons," Energy Policy, Elsevier, vol. 146(C).
    10. Gadenne, David & Sharma, Bishnu & Kerr, Don & Smith, Tim, 2011. "The influence of consumers' environmental beliefs and attitudes on energy saving behaviours," Energy Policy, Elsevier, vol. 39(12), pages 7684-7694.
    11. Bin, Shui & Dowlatabadi, Hadi, 2005. "Consumer lifestyle approach to US energy use and the related CO2 emissions," Energy Policy, Elsevier, vol. 33(2), pages 197-208, January.
    12. William A. Brock & Cars H. Hommes, 2001. "A Rational Route to Randomness," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 16, pages 402-438, Edward Elgar Publishing.
    13. Llavador, Humberto & Roemer, John E. & Silvestre, Joaquim, 2011. "“A dynamic analysis of human welfare in a warming planet”," Journal of Public Economics, Elsevier, vol. 95(11), pages 1607-1620.
    14. Fischer, Carolyn & Springborn, Michael, 2011. "Emissions targets and the real business cycle: Intensity targets versus caps or taxes," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 352-366.
    15. Annicchiarico, Barbara & Diluiso, Francesca, 2019. "International transmission of the business cycle and environmental policy," Resource and Energy Economics, Elsevier, vol. 58(C).
    16. Carolyn Fischer & Garth Heutel, 2013. "Environmental Macroeconomics: Environmental Policy, Business Cycles, and Directed Technical Change," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 197-210, June.
    17. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Solving dynamic general equilibrium models using a second-order approximation to the policy function," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 755-775, January.
    18. Garth Heutel, 2012. "How Should Environmental Policy Respond to Business Cycles? Optimal Policy under Persistent Productivity Shocks," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(2), pages 244-264, April.
    19. Khan, Hashmat & Metaxoglou, Konstantinos & Knittel, Christopher R. & Papineau, Maya, 2019. "Carbon emissions and business cycles," Journal of Macroeconomics, Elsevier, vol. 60(C), pages 1-19.
    20. Bihong Huang & Maria Teresa Punzi & Yu Wu, 2021. "Do Banks Price Environmental Transition Risks? Evidence from a Quasi-Natural Experiment in a Chinese Province," IMF Working Papers 2021/228, International Monetary Fund.
    21. Konstantinos Angelopoulos & George Economides & Apostolis Philippopoulos, 2010. "What is the best environmental policy?Taxes, permits and rules under economic and environmental uncertainty," Working Papers 119, Bank of Greece.
    22. Niu, Tong & Yao, Xilong & Shao, Shuai & Li, Ding & Wang, Wenxi, 2018. "Environmental tax shocks and carbon emissions: An estimated DSGE model," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 9-17.
    23. Alisdair McKay & Emi Nakamura & Jón Steinsson, 2016. "The Power of Forward Guidance Revisited," American Economic Review, American Economic Association, vol. 106(10), pages 3133-3158, October.
    24. James E. Neumann & Jacqueline Willwerth & Jeremy Martinich & James McFarland & Marcus C. Sarofim & Gary Yohe, 2020. "Climate Damage Functions for Estimating the Economic Impacts of Climate Change in the United States," Review of Environmental Economics and Policy, University of Chicago Press, vol. 14(1), pages 25-43.
    25. J. B. Taylor & Harald Uhlig (ed.), 2016. "Handbook of Macroeconomics," Handbook of Macroeconomics, Elsevier, edition 1, volume 2, number 2.
    26. Apostolakis, Bobby E., 1990. "Energy--capital substitutability/ complementarity : The dichotomy," Energy Economics, Elsevier, vol. 12(1), pages 48-58, January.
    27. King, Robert G. & Rebelo, Sergio T., 1999. "Resuscitating real business cycles," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 14, pages 927-1007, Elsevier.
    28. Iosifidi, Maria, 2016. "Environmental awareness, consumption, and labor supply: Empirical evidence from household survey data," Ecological Economics, Elsevier, vol. 129(C), pages 1-11.
    29. William Brock & M. Taylor, 2010. "The Green Solow model," Journal of Economic Growth, Springer, vol. 15(2), pages 127-153, June.
    30. Delis, Manthos D. & Iosifidi, Maria, 2020. "Environmentally aware households," Economic Modelling, Elsevier, vol. 88(C), pages 263-279.
    31. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    32. Barbara Annicchiarico & Fabio Di Dio, 2017. "GHG Emissions Control and Monetary Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 823-851, August.
    33. Konstantinos Angelopoulos & George Economides & Apostolis Philippopoulos, 2013. "First-and second-best allocations under economic and environmental uncertainty," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 20(3), pages 360-380, June.
    34. Annicchiarico, Barbara & Di Dio, Fabio, 2015. "Environmental policy and macroeconomic dynamics in a new Keynesian model," Journal of Environmental Economics and Management, Elsevier, vol. 69(C), pages 1-21.
    35. Matteo Iacoviello, 2015. "Financial Business Cycles," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 18(1), pages 140-164, January.
    36. Dissou, Yazid & Karnizova, Lilia, 2016. "Emissions cap or emissions tax? A multi-sector business cycle analysis," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 169-188.
    37. Christopher Gust & Edward Herbst & David López-Salido & Matthew E. Smith, 2017. "The Empirical Implications of the Interest-Rate Lower Bound," American Economic Review, American Economic Association, vol. 107(7), pages 1971-2006, July.
    38. Malerba, Franco & Orsenigo, Luigi, 1997. "Technological Regimes and Sectoral Patterns of Innovative Activities," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 6(1), pages 83-117.
    39. Chan, Ying Tung, 2020. "Are macroeconomic policies better in curbing air pollution than environmental policies? A DSGE approach with carbon-dependent fiscal and monetary policies," Energy Policy, Elsevier, vol. 141(C).
    40. Doda, Baran, 2014. "Evidence on business cycles and CO2 emissions," LSE Research Online Documents on Economics 57009, London School of Economics and Political Science, LSE Library.
    41. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
    42. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    43. Mikhail Golosov & John Hassler & Per Krusell & Aleh Tsyvinski, 2014. "Optimal Taxes on Fossil Fuel in General Equilibrium," Econometrica, Econometric Society, vol. 82(1), pages 41-88, January.
    44. Huang, Bihong & Punzi, Maria Teresa & Wu, Yu, 2021. "Do banks price environmental transition risks? Evidence from a quasi-natural experiment in China," Journal of Corporate Finance, Elsevier, vol. 69(C).
    45. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    46. Argentiero, Amedeo & Bollino, Carlo Andrea & Micheli, Silvia & Zopounidis, Constantin, 2018. "Renewable energy sources policies in a Bayesian DSGE model," Renewable Energy, Elsevier, vol. 120(C), pages 60-68.
    47. Jakučionytė-Skodienė, Miglė & Dagiliūtė, Renata & Liobikienė, Genovaitė, 2020. "Do general pro-environmental behaviour, attitude, and knowledge contribute to energy savings and climate change mitigation in the residential sector?," Energy, Elsevier, vol. 193(C).
    48. Ying Tung Chan, 2019. "Optimal Environmental Tax Rate in an Open Economy with Labor Migration—An E-DSGE Model Approach," Sustainability, MDPI, vol. 11(19), pages 1-38, September.
    49. Paul De Grauwe, 2012. "Lectures on Behavioral Macroeconomics," Economics Books, Princeton University Press, edition 1, volume 1, number 9891.
    50. Yongsung Chang & Sun-Bin Kim, 2007. "Heterogeneity and Aggregation: Implications for Labor-Market Fluctuations," American Economic Review, American Economic Association, vol. 97(5), pages 1939-1956, December.
    51. Calvo, Guillermo A., 1983. "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 383-398, September.
    52. Matthew E. Kahn & Matthew J. Kotchen, 2010. "Environmental Concern and the Business Cycle: The Chilling Effect of Recession," NBER Working Papers 16241, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Busato, Francesco & Chiarini, Bruno & Cisco, Gianluigi & Ferrara, Maria, 2021. "Greta Thunberg effect and Business Cycle Dynamics: A DSGE model," MPRA Paper 110141, University Library of Munich, Germany.
    2. Barbara Annicchiarico & Marco Carli & Francesca Diluiso, 2022. "Climate Policies, Macroprudential Regulation, and the Welfare Cost of Business Cycles," CEIS Research Paper 543, Tor Vergata University, CEIS, revised 31 Oct 2022.
    3. Chan, Ying Tung & Zhao, Hong, 2023. "Optimal carbon tax rates in a dynamic stochastic general equilibrium model with a supply chain," Economic Modelling, Elsevier, vol. 119(C).
    4. Chan, Ying Tung & Zhao, Hong, 2019. "How do credit market frictions affect carbon cycles? an estimated DSGE model approach," MPRA Paper 106987, University Library of Munich, Germany, revised 05 Dec 2020.
    5. Barbara Annicchiarico & Stefano Carattini & Carolyn Fischer & Garth Heutel, 2022. "Business Cycles and Environmental Policy: A Primer," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 3(1), pages 221-253.
    6. Chan, Ying Tung, 2020. "Optimal emissions tax rates under habit formation and social comparisons," Energy Policy, Elsevier, vol. 146(C).
    7. Xiao, Bowen & Fan, Ying & Guo, Xiaodan, 2018. "Exploring the macroeconomic fluctuations under different environmental policies in China: A DSGE approach," Energy Economics, Elsevier, vol. 76(C), pages 439-456.
    8. Annicciarico, Barbara & Di Dio, Fabio & Dilusio, Francesca, 2022. "Climate Actions, Market Beliefs, and Monetary Policy," Working Papers 2022-14, Joint Research Centre, European Commission.
    9. Annicchiarico, Barbara & Diluiso, Francesca, 2019. "International transmission of the business cycle and environmental policy," Resource and Energy Economics, Elsevier, vol. 58(C).
    10. Chen, Chuanqi & Pan, Dongyang & Huang, Zhigang & Bleischwitz, Raimund, 2021. "Engaging central banks in climate change? The mix of monetary and climate policy," Energy Economics, Elsevier, vol. 103(C).
    11. Huang, Bihong & Punzi, Maria Teresa & Wu, Yu, 2022. "Environmental regulation and financial stability: Evidence from Chinese manufacturing firms," Journal of Banking & Finance, Elsevier, vol. 136(C).
    12. Stefano Carattini & Garth Heutel & Givi Melkadze, 2023. "Climate Policy, Financial Frictions, and Transition Risk," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 778-794, December.
    13. Eric Jondeau & Grégory Levieuge & Jean-Guillaume Sahuc & Gauthier Vermandel, 2023. "Environmental Subsidies to Mitigate Net-Zero Transition Costs," Working papers 910, Banque de France.
    14. Diluiso, Francesca & Annicchiarico, Barbara & Kalkuhl, Matthias & Minx, Jan C., 2021. "Climate actions and macro-financial stability: The role of central banks," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    15. Stefano Carattini & Garth Heutel & Givi Melkadze, 2023. "Climate Policy, Financial Frictions, and Transition Risk," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 778-794, December.
    16. Chen, Chuanqi & Pan, Dongyang, 2020. "The Optimal Mix of Monetary and Climate Policy," MPRA Paper 97718, University Library of Munich, Germany.
    17. Dissou, Yazid & Karnizova, Lilia, 2016. "Emissions cap or emissions tax? A multi-sector business cycle analysis," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 169-188.
    18. Sandra Batten & Stephen Millard, 2024. "Energy and Climate Policy in a DSGE Model of the United Kingdom," National Institute of Economic and Social Research (NIESR) Discussion Papers 553, National Institute of Economic and Social Research.
    19. Hinterlang, Natascha & Martin, Anika & Röhe, Oke & Stähler, Nikolai & Strobel, Johannes, 2022. "Using energy and emissions taxation to finance labor tax reductions in a multi-sector economy," Energy Economics, Elsevier, vol. 115(C).
    20. Xiao, Bowen & Fan, Ying & Guo, Xiaodan, 2021. "Dynamic interactive effect and co-design of SO2 emission tax and CO2 emission trading scheme," Energy Policy, Elsevier, vol. 152(C).

    More about this item

    Keywords

    Carbon emissions; Environmental awareness; DSGE model; General equilibrium; Global warming; Green consumer behavior;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:4:d:10.1007_s10668-022-02179-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.