IDEAS home Printed from https://ideas.repec.org/r/inm/ortrsc/v35y2001i3p250-267.html
   My bibliography  Save this item

Common-Lines and Passenger Assignment in Congested Transit Networks

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Du, Muqing & Chen, Anthony, 2022. "Sensitivity analysis for transit equilibrium assignment and applications to uncertainty analysis," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 175-202.
  2. Liu, Yang & Blandin, Sebastien & Samaranayake, Samitha, 2019. "Stochastic on-time arrival problem in transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 122-138.
  3. Bravo, Mario & Briceño, Luis & Cominetti, Roberto & Cortés, Cristián E. & Martínez, Francisco, 2010. "An integrated behavioral model of the land-use and transport systems with network congestion and location externalities," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 584-596, May.
  4. Coulombel, Nicolas & Monchambert, Guillaume, 2023. "Diseconomies of scale and subsidies in urban public transportation," Journal of Public Economics, Elsevier, vol. 223(C).
  5. Binder, Stefan & Maknoon, Yousef & Bierlaire, Michel, 2017. "Exogenous priority rules for the capacitated passenger assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 19-42.
  6. Nair, Rahul & Miller-Hooks, Elise, 2014. "Equilibrium network design of shared-vehicle systems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 47-61.
  7. Schmöcker, Jan-Dirk & Bell, Michael G.H. & Kurauchi, Fumitaka, 2008. "A quasi-dynamic capacity constrained frequency-based transit assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 925-945, December.
  8. Massimo Gangi & Giulio E. Cantarella & Antonino Vitetta, 2019. "Solving stochastic frequency-based assignment to transit networks with pre-trip/en-route path choice," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 661-681, December.
  9. Kenetsu Uchida & Agachai Sumalee & David Watling & Richard Connors, 2007. "A Study on Network Design Problems for Multi-modal Networks by Probit-based Stochastic User Equilibrium," Networks and Spatial Economics, Springer, vol. 7(3), pages 213-240, September.
  10. Trozzi, Valentina & Gentile, Guido & Bell, Michael G.H. & Kaparias, Ioannis, 2013. "Dynamic user equilibrium in public transport networks with passenger congestion and hyperpaths," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 266-285.
  11. S. Mahmassani, Hani & F. Hyland, Michael, 2016. "Gap-based transit assignment algorithm with vehicle capacity constraints: Simulation-based implementation and large-scale applicationAuthor-Name: Verbas, Ömer," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 1-16.
  12. Alejandro Tirachini & David Hensher & Michiel Bliemer, 2014. "Accounting for travel time variability in the optimal pricing of cars and buses," Transportation, Springer, vol. 41(5), pages 947-971, September.
  13. Li, Guoyuan & Chen, Anthony, 2023. "Strategy-based transit stochastic user equilibrium model with capacity and number-of-transfers constraints," European Journal of Operational Research, Elsevier, vol. 305(1), pages 164-183.
  14. Luis Briceño & Roberto Cominetti & Cristián Cortés & Francisco Martínez, 2008. "An Integrated Behavioral Model of Land Use and Transport System: A Hyper-network Equilibrium Approach," Networks and Spatial Economics, Springer, vol. 8(2), pages 201-224, September.
  15. Valentina Trozzi & Guido Gentile & Ioannis Kaparias & Michael Bell, 2015. "Effects of Countdown Displays in Public Transport Route Choice Under Severe Overcrowding," Networks and Spatial Economics, Springer, vol. 15(3), pages 823-842, September.
  16. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2020. "Beyond the Mohring effect: Scale economies induced by transit lines structures design," Economics of Transportation, Elsevier, vol. 22(C).
  17. Cepeda, M. & Cominetti, R. & Florian, M., 2006. "A frequency-based assignment model for congested transit networks with strict capacity constraints: characterization and computation of equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 40(6), pages 437-459, July.
  18. Homero Larrain & Juan Muñoz, 2008. "Public Transit Corridor Assignment Assuming Congestion Due to Passenger Boarding and Alighting," Networks and Spatial Economics, Springer, vol. 8(2), pages 241-256, September.
  19. Shang, Pan & Li, Ruimin & Guo, Jifu & Xian, Kai & Zhou, Xuesong, 2019. "Integrating Lagrangian and Eulerian observations for passenger flow state estimation in an urban rail transit network: A space-time-state hyper network-based assignment approach," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 135-167.
  20. Canca, David & Andrade-Pineda, José Luis & De los Santos, Alicia & Calle, Marcos, 2018. "The Railway Rapid Transit frequency setting problem with speed-dependent operation costs," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 494-519.
  21. Durán-Micco, Javier & Vansteenwegen, Pieter, 2022. "Transit network design considering link capacities," Transport Policy, Elsevier, vol. 127(C), pages 148-157.
  22. Hernández, Daniel & Muñoz, Juan Carlos & Giesen, Ricardo & Delgado, Felipe, 2015. "Analysis of real-time control strategies in a corridor with multiple bus services," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 83-105.
  23. Chen, Kang & Yang, Zhongzhen & Notteboom, Theo, 2014. "The design of coastal shipping services subject to carbon emission reduction targets and state subsidy levels," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 192-211.
  24. Esteve Codina, 2013. "A Variational Inequality Reformulation of a Congested Transit Assignment Model by Cominetti, Correa, Cepeda, and Florian," Transportation Science, INFORMS, vol. 47(2), pages 231-246, May.
  25. Codina, Esteve & Rosell, Francisca, 2017. "A heuristic method for a congested capacitated transit assignment model with strategies," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 293-320.
  26. Jiang, Y. & Szeto, W.Y., 2016. "Reliability-based stochastic transit assignment: Formulations and capacity paradox," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 181-206.
  27. Wang, David Z.W. & Nayan, Ashish & Szeto, W.Y., 2018. "Optimal bus service design with limited stop services in a travel corridor," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 70-86.
  28. Kumar, Pramesh & Khani, Alireza, 2022. "Planning of integrated mobility-on-demand and urban transit networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 499-521.
  29. Padma Seetharaman, 2017. "Modelling risk aversion using a disaggregate stochastic process model in congested transit networks," Public Transport, Springer, vol. 9(3), pages 549-569, October.
  30. Jin, Kun & Wang, Wei & Li, Xinran & Hua, Xuedong & Qin, Shaoyang, 2022. "Exploring the robustness of public transportation system on augmented network: A case from Nanjing China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
  31. Cortés, Cristián E. & Jara-Moroni, Pedro & Moreno, Eduardo & Pineda, Cristobal, 2013. "Stochastic transit equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 29-44.
  32. Ren, Hualing & Song, Yingjie & Long, Jiancheng & Si, Bingfeng, 2021. "A new transit assignment model based on line and node strategies," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 121-142.
  33. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
  34. Gómez Gélvez, Julian & Mojica, Carlos, 2022. "Subsidios al transporte público en América Latina desde una perspectiva de eficiencia: aplicación a Bogotá, Colombia," IDB Publications (Working Papers) 12260, Inter-American Development Bank.
  35. Tian, Qingyun & Wang, David Z.W. & Lin, Yun Hui, 2021. "Service operation design in a transit network with congested common lines," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 81-102.
  36. Khani, Alireza, 2019. "An online shortest path algorithm for reliable routing in schedule-based transit networks considering transfer failure probability," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 549-564.
  37. Hironori Kato & Yuichiro Kaneko & Masashi Inoue, 2010. "Comparative analysis of transit assignment: evidence from urban railway system in the Tokyo Metropolitan Area," Transportation, Springer, vol. 37(5), pages 775-799, September.
  38. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
  39. Sun, S. & Szeto, W.Y., 2018. "Logit-based transit assignment: Approach-based formulation and paradox revisit," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 191-215.
  40. Batarce, Marco, 2016. "Estimation of urban bus transit marginal cost without cost data," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 241-262.
  41. Wu, Di & Yin, Yafeng & Lawphongpanich, Siriphong, 2011. "Pareto-improving congestion pricing on multimodal transportation networks," European Journal of Operational Research, Elsevier, vol. 210(3), pages 660-669, May.
  42. Cortés, Cristián E. & Donoso, Pedro & Gutiérrez, Leonel & Herl, Daniel & Muñoz, Diego, 2023. "A recursive stochastic transit equilibrium model estimated using passive data from Santiago, Chile," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
  43. Kamel, Islam & Shalaby, Amer & Abdulhai, Baher, 2020. "A modelling platform for optimizing time-dependent transit fares in large-scale multimodal networks," Transport Policy, Elsevier, vol. 92(C), pages 38-54.
  44. Tian, Qingyun & Wang, David Z.W. & Lin, Yun Hui, 2022. "Optimal deployment of autonomous buses into a transit service network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
  45. Younes Hamdouch & Siriphong Lawphongpanich, 2010. "Congestion Pricing for Schedule-Based Transit Networks," Transportation Science, INFORMS, vol. 44(3), pages 350-366, August.
  46. Yu Shen & Jinhua Zhao, 2017. "Capacity constrained accessibility of high-speed rail," Transportation, Springer, vol. 44(2), pages 395-422, March.
  47. Li, Qianfei & (Will) Chen, Peng & (Marco) Nie, Yu, 2015. "Finding optimal hyperpaths in large transit networks with realistic headway distributions," European Journal of Operational Research, Elsevier, vol. 240(1), pages 98-108.
  48. Fitsum Teklu, 2008. "A Stochastic Process Approach for Frequency-based Transit Assignment with Strict Capacity Constraints," Networks and Spatial Economics, Springer, vol. 8(2), pages 225-240, September.
  49. Canca, David & Barrena, Eva & De-Los-Santos, Alicia & Andrade-Pineda, José Luis, 2016. "Setting lines frequency and capacity in dense railway rapid transit networks with simultaneous passenger assignment," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 251-267.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.