IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v12y2008i1p235-249.html
   My bibliography  Save this item

Modeling of hybrid renewable energy systems

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gonzalez de Durana, Jose & Barambones, Oscar, 2018. "Technology-free microgrid modeling with application to demand side management," Applied Energy, Elsevier, vol. 219(C), pages 165-178.
  2. Figaj, Rafał, 2021. "Performance assessment of a renewable micro-scale trigeneration system based on biomass steam cycle, wind turbine, photovoltaic field," Renewable Energy, Elsevier, vol. 177(C), pages 193-208.
  3. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
  4. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Including management and security of supply constraints for designing stand-alone electrification systems in developing countries," Renewable Energy, Elsevier, vol. 80(C), pages 359-369.
  5. Mari R. Tye & Sue Ellen Haupt & Eric Gilleland & Christina Kalb & Tara Jensen, 2019. "Assessing Evidence for Weather Regimes Governing Solar Power Generation in Kuwait," Energies, MDPI, vol. 12(23), pages 1-17, November.
  6. Koo, Jamin & Park, Kyungtae & Shin, Dongil & Yoon, En Sup, 2011. "Economic evaluation of renewable energy systems under varying scenarios and its implications to Korea's renewable energy plan," Applied Energy, Elsevier, vol. 88(6), pages 2254-2260, June.
  7. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2015. "Solar hydrogen hybrid energy systems for off-grid electricity supply: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1791-1808.
  8. Das, Barun K. & Hoque, Najmul & Mandal, Soumya & Pal, Tapas Kumar & Raihan, Md Abu, 2017. "A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh," Energy, Elsevier, vol. 134(C), pages 775-788.
  9. Ramesh Kumar Arunachalam & Kumar Chandrasekaran & Eugen Rusu & Nagananthini Ravichandran & Hady H. Fayek, 2023. "Economic Feasibility of a Hybrid Microgrid System for a Distributed Substation," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
  10. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
  11. Borges Neto, M.R. & Carvalho, P.C.M. & Carioca, J.O.B. & Canafístula, F.J.F., 2010. "Biogas/photovoltaic hybrid power system for decentralized energy supply of rural areas," Energy Policy, Elsevier, vol. 38(8), pages 4497-4506, August.
  12. Akinyele, D.O. & Rayudu, R.K., 2016. "Community-based hybrid electricity supply system: A practical and comparative approach," Applied Energy, Elsevier, vol. 171(C), pages 608-628.
  13. Comodi, Gabriele & Renzi, Massimiliano & Cioccolanti, Luca & Caresana, Flavio & Pelagalli, Leonardo, 2015. "Hybrid system with micro gas turbine and PV (photovoltaic) plant: Guidelines for sizing and management strategies," Energy, Elsevier, vol. 89(C), pages 226-235.
  14. Seung Hyun Jeon & Joohyung Lee & Hong-Shik Park, 2018. "A Stackelberg Game Approach for Energy Outage-Aware Power Distribution of an Off-Grid Base Station over Multiple Retailers," Energies, MDPI, vol. 11(4), pages 1-13, March.
  15. Rafał Figaj, 2024. "Energy and Economic Sustainability of a Small-Scale Hybrid Renewable Energy System Powered by Biogas, Solar Energy, and Wind," Energies, MDPI, vol. 17(3), pages 1-16, February.
  16. Patel, Alpesh M. & Singal, Sunil Kumar, 2019. "Optimal component selection of integrated renewable energy system for power generation in stand-alone applications," Energy, Elsevier, vol. 175(C), pages 481-504.
  17. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
  18. Liu, F. & Tait, S. & Schellart, A. & Mayfield, M. & Boxall, J., 2020. "Reducing carbon emissions by integrating urban water systems and renewable energy sources at a community scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
  19. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
  20. Zachar, Michael & Daoutidis, Prodromos, 2015. "Understanding and predicting the impact of location and load on microgrid design," Energy, Elsevier, vol. 90(P1), pages 1005-1023.
  21. Rafał Figaj & Maciej Żołądek & Maksymilian Homa & Anna Pałac, 2022. "A Novel Hybrid Polygeneration System Based on Biomass, Wind and Solar Energy for Micro-Scale Isolated Communities," Energies, MDPI, vol. 15(17), pages 1-33, August.
  22. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Nybø, Astrid, 2020. "Transitioning remote Arctic settlements to renewable energy systems – A modelling study of Longyearbyen, Svalbard," Applied Energy, Elsevier, vol. 258(C).
  23. Chen, Jun & Rabiti, Cristian, 2017. "Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems," Energy, Elsevier, vol. 120(C), pages 507-517.
  24. Borhanazad, Hanieh & Mekhilef, Saad & Gounder Ganapathy, Velappa & Modiri-Delshad, Mostafa & Mirtaheri, Ali, 2014. "Optimization of micro-grid system using MOPSO," Renewable Energy, Elsevier, vol. 71(C), pages 295-306.
  25. Elke Moser & Dieter Grass & Gernot Tragler, 2016. "A non-autonomous optimal control model of renewable energy production under the aspect of fluctuating supply and learning by doing," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 545-575, July.
  26. Garcia-Heller, Veronica & Paredes, Stephan & Ong, Chin Lee & Ruch, Patrick & Michel, Bruno, 2014. "Exergoeconomic analysis of high concentration photovoltaic thermal co-generation system for space cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 8-19.
  27. Bismark Singh & David P. Morton & Surya Santoso, 2018. "An adaptive model with joint chance constraints for a hybrid wind-conventional generator system," Computational Management Science, Springer, vol. 15(3), pages 563-582, October.
  28. Zupančič, Jernej & Filipič, Bogdan & Gams, Matjaž, 2020. "Genetic-programming-based multi-objective optimization of strategies for home energy-management systems," Energy, Elsevier, vol. 203(C).
  29. Arnau González & Jordi-Roger Riba & Antoni Rius, 2015. "Optimal Sizing of a Hybrid Grid-Connected Photovoltaic–Wind–Biomass Power System," Sustainability, MDPI, vol. 7(9), pages 1-20, September.
  30. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.
  31. Olivia Francesca B. Agua & Robert Joseph A. Basilio & Mc Erschad D. Pabillan & Michael T. Castro & Philipp Blechinger & Joey D. Ocon, 2020. "Decentralized versus Clustered Microgrids: An Energy Systems Study for Reliable Off-Grid Electrification of Small Islands," Energies, MDPI, vol. 13(17), pages 1-22, August.
  32. Loiy Al-Ghussain & Mohammad Abujubbeh & Adnan Darwish Ahmad & Ahmad M. Abubaker & Onur Taylan & Murat Fahrioglu & Nelson K. Akafuah, 2020. "100% Renewable Energy Grid for Rural Electrification of Remote Areas: A Case Study in Jordan," Energies, MDPI, vol. 13(18), pages 1-18, September.
  33. Sun, Wei & Harrison, Gareth P., 2019. "Wind-solar complementarity and effective use of distribution network capacity," Applied Energy, Elsevier, vol. 247(C), pages 89-101.
  34. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "A hybrid tool to combine multi-objective optimization and multi-criterion decision making in designing standalone hybrid energy systems," Applied Energy, Elsevier, vol. 107(C), pages 412-425.
  35. Kalim Ullah & Sajjad Ali & Taimoor Ahmad Khan & Imran Khan & Sadaqat Jan & Ibrar Ali Shah & Ghulam Hafeez, 2020. "An Optimal Energy Optimization Strategy for Smart Grid Integrated with Renewable Energy Sources and Demand Response Programs," Energies, MDPI, vol. 13(21), pages 1-17, November.
  36. Fahd Diab & Hai Lan & Lijun Zhang & Salwa Ali, 2015. "An Environmentally-Friendly Tourist Village in Egypt Based on a Hybrid Renewable Energy System––Part One: What Is the Optimum City?," Energies, MDPI, vol. 8(7), pages 1-19, July.
  37. Edwin, M. & Joseph Sekhar, S., 2018. "Techno- Economic evaluation of milk chilling unit retrofitted with hybrid renewable energy system in coastal province," Energy, Elsevier, vol. 151(C), pages 66-78.
  38. Xiaohui Yang & Jiating Long & Peiyun Liu & Xiaolong Zhang & Xiaoping Liu, 2018. "Optimal Scheduling of Microgrid with Distributed Power Based on Water Cycle Algorithm," Energies, MDPI, vol. 11(9), pages 1-17, September.
  39. Chang, Tian-Pau & Liu, Feng-Jiao & Ko, Hong-Hsi & Huang, Ming-Chao, 2017. "Oscillation characteristic study of wind speed, global solar radiation and air temperature using wavelet analysis," Applied Energy, Elsevier, vol. 190(C), pages 650-657.
  40. Bigdeli, Nooshin, 2015. "Optimal management of hybrid PV/fuel cell/battery power system: A comparison of optimal hybrid approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 377-393.
  41. Mahelet G. Fikru & Gregory Gelles & Ana-Maria Ichim & Joseph D. Smith, 2019. "Notes on the Economics of Residential Hybrid Energy System," Energies, MDPI, vol. 12(14), pages 1-18, July.
  42. Brunet, Carole & Savadogo, Oumarou & Baptiste, Pierre & Bouchard, Michel A., 2018. "Shedding some light on photovoltaic solar energy in Africa – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 325-342.
  43. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
  44. Moradi, Mohammad H. & Foroutan, Vahid Bahrami & Abedini, Mohammad, 2017. "Power flow analysis in islanded Micro-Grids via modeling different operational modes of DGs: A review and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 248-262.
  45. Xu, Beibei & Zhang, Jingjing & Egusquiza, Mònica & Chen, Diyi & Li, Feng & Behrens, Paul & Egusquiza, Eduard, 2021. "A review of dynamic models and stability analysis for a hydro-turbine governing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  46. Pliego Marugán, Alberto & García Márquez, Fausto Pedro & Pinar Pérez, Jesús María, 2022. "A techno-economic model for avoiding conflicts of interest between owners of offshore wind farms and maintenance suppliers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  47. Ioan Aschilean & Gabriel Rasoi & Maria Simona Raboaca & Constantin Filote & Mihai Culcer, 2018. "Design and Concept of an Energy System Based on Renewable Sources for Greenhouse Sustainable Agriculture," Energies, MDPI, vol. 11(5), pages 1-12, May.
  48. Kaabeche, A. & Belhamel, M. & Ibtiouen, R., 2011. "Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system," Energy, Elsevier, vol. 36(2), pages 1214-1222.
  49. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
  50. Dihrab, Salwan S. & Sopian, K., 2010. "Electricity generation of hybrid PV/wind systems in Iraq," Renewable Energy, Elsevier, vol. 35(6), pages 1303-1307.
  51. Jerez, S. & Tobin, I. & Turco, M. & Jiménez-Guerrero, P. & Vautard, R. & Montávez, J.P., 2019. "Future changes, or lack thereof, in the temporal variability of the combined wind-plus-solar power production in Europe," Renewable Energy, Elsevier, vol. 139(C), pages 251-260.
  52. Rafał Figaj & Krzysztof Sornek & Szymon Podlasek & Maciej Żołądek, 2020. "Operation and Sensitivity Analysis of a Micro-Scale Hybrid Trigeneration System Integrating a Water Steam Cycle and Wind Turbine under Different Reference Scenarios," Energies, MDPI, vol. 13(21), pages 1-23, October.
  53. Zakaria Belboul & Belgacem Toual & Abdellah Kouzou & Lakhdar Mokrani & Abderrahman Bensalem & Ralph Kennel & Mohamed Abdelrahem, 2022. "Multiobjective Optimization of a Hybrid PV/Wind/Battery/Diesel Generator System Integrated in Microgrid: A Case Study in Djelfa, Algeria," Energies, MDPI, vol. 15(10), pages 1-30, May.
  54. Sen, Rohit & Bhattacharyya, Subhes C., 2014. "Off-grid electricity generation with renewable energy technologies in India: An application of HOMER," Renewable Energy, Elsevier, vol. 62(C), pages 388-398.
  55. Kirim, Yavuz & Sadikoglu, Hasan & Melikoglu, Mehmet, 2022. "Technical and economic analysis of biogas and solar photovoltaic (PV) hybrid renewable energy system for dairy cattle barns," Renewable Energy, Elsevier, vol. 188(C), pages 873-889.
  56. Dawoud, Samir M. & Lin, Xiangning & Okba, Merfat I., 2018. "Hybrid renewable microgrid optimization techniques: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2039-2052.
  57. Das, Barun K. & Hasan, Mahmudul & Das, Pronob, 2021. "Impact of storage technologies, temporal resolution, and PV tracking on stand-alone hybrid renewable energy for an Australian remote area application," Renewable Energy, Elsevier, vol. 173(C), pages 362-380.
  58. Elizaveta Gavrikova & Yegor Burda & Vladimir Gavrikov & Ruslan Sharafutdinov & Irina Volkova & Marina Rubleva & Daria Polosukhina, 2019. "Clean Energy Sources: Insights from Russia," Resources, MDPI, vol. 8(2), pages 1-25, May.
  59. Hosseinalizadeh, Ramin & Shakouri G, Hamed & Amalnick, Mohsen Sadegh & Taghipour, Peyman, 2016. "Economic sizing of a hybrid (PV–WT–FC) renewable energy system (HRES) for stand-alone usages by an optimization-simulation model: Case study of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 139-150.
  60. Nesrine Kefif & Bachir Melzi & Mehran Hashemian & Mamdouh El Haj Assad & Siamak Hoseinzadeh, 2022. "Feasibility and optimal operation of micro energy hybrid system (hydro/wind) in the rural valley region [Energy revolution: from a fossil energy era to a new energy era]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 58-68.
  61. Sanni, Shereefdeen Oladapo & Oricha, Joseph Yakubu & Oyewole, Taoheed Oluwafemi & Bawonda, Femi Ikotoni, 2021. "Analysis of backup power supply for unreliable grid using hybrid solar PV/diesel/biogas system," Energy, Elsevier, vol. 227(C).
  62. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
  63. Rauf, Huzaifa & Gull, Muhammad Shuzub & Arshad, Naveed, 2020. "Complementing hydroelectric power with floating solar PV for daytime peak electricity demand," Renewable Energy, Elsevier, vol. 162(C), pages 1227-1242.
  64. López-González, A. & Domenech, B. & Gómez-Hernández, D. & Ferrer-Martí, L., 2017. "Renewable microgrid projects for autonomous small-scale electrification in Andean countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1255-1265.
  65. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
  66. Kumbuso Joshua Nyoni & Anesu Maronga & Paul Gerard Tuohy & Agabu Shane, 2021. "Hydro–Connected Floating PV Renewable Energy System and Onshore Wind Potential in Zambia," Energies, MDPI, vol. 14(17), pages 1-42, August.
  67. Li, He & Liu, Pan & Guo, Shenglian & Ming, Bo & Cheng, Lei & Yang, Zhikai, 2019. "Long-term complementary operation of a large-scale hydro-photovoltaic hybrid power plant using explicit stochastic optimization," Applied Energy, Elsevier, vol. 238(C), pages 863-875.
  68. Aotian Song & Lin Lu & Zhizhao Liu & Man Sing Wong, 2016. "A Study of Incentive Policies for Building-Integrated Photovoltaic Technology in Hong Kong," Sustainability, MDPI, vol. 8(8), pages 1-21, August.
  69. Shaaban, Mohamed & Petinrin, J.O., 2014. "Renewable energy potentials in Nigeria: Meeting rural energy needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 72-84.
  70. Maatallah, Taher & Ghodhbane, Nahed & Ben Nasrallah, Sassi, 2016. "Assessment viability for hybrid energy system (PV/wind/diesel) with storage in the northernmost city in Africa, Bizerte, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1639-1652.
  71. Amir Mosavi & Mohsen Salimi & Sina Faizollahzadeh Ardabili & Timon Rabczuk & Shahaboddin Shamshirband & Annamaria R. Varkonyi-Koczy, 2019. "State of the Art of Machine Learning Models in Energy Systems, a Systematic Review," Energies, MDPI, vol. 12(7), pages 1-42, April.
  72. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.
  73. Azaza, Maher & Wallin, Fredrik, 2017. "Multi objective particle swarm optimization of hybrid micro-grid system: A case study in Sweden," Energy, Elsevier, vol. 123(C), pages 108-118.
  74. Zghal, Wissem & Kantchev, Gueorgui & Kchaou, Hédi, 2011. "Optimization and management of the energy produced by a wind energizing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1080-1088, February.
  75. L. Alvarado-Barrios & A. Rodríguez del Nozal & A. Tapia & J. L. Martínez-Ramos & D. G. Reina, 2019. "An Evolutionary Computational Approach for the Problem of Unit Commitment and Economic Dispatch in Microgrids under Several Operation Modes," Energies, MDPI, vol. 12(11), pages 1-23, June.
  76. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
  77. Das, Barun K. & Al-Abdeli, Yasir M. & Woolridge, Matthew, 2019. "Effects of battery technology and load scalability on stand-alone PV/ICE hybrid micro-grid system performance," Energy, Elsevier, vol. 168(C), pages 57-69.
  78. Minbeom Lee & Yikyeom Kim & Hyun Suk Lim & Ayeong Jo & Dohyung Kang & Jae W. Lee, 2020. "Reverse Water–Gas Shift Chemical Looping Using a Core–Shell Structured Perovskite Oxygen Carrier," Energies, MDPI, vol. 13(20), pages 1-12, October.
  79. Hegazy Rezk & N. Kanagaraj & Mujahed Al-Dhaifallah, 2020. "Design and Sensitivity Analysis of Hybrid Photovoltaic-Fuel-Cell-Battery System to Supply a Small Community at Saudi NEOM City," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
  80. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
  81. Schrotenboer, Albert H. & Veenstra, Arjen A.T. & uit het Broek, Michiel A.J. & Ursavas, Evrim, 2022. "A Green Hydrogen Energy System: Optimal control strategies for integrated hydrogen storage and power generation with wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  82. Ullah, Kalim & Hafeez, Ghulam & Khan, Imran & Jan, Sadaqat & Javaid, Nadeem, 2021. "A multi-objective energy optimization in smart grid with high penetration of renewable energy sources," Applied Energy, Elsevier, vol. 299(C).
  83. Askarzadeh, Alireza, 2017. "Distribution generation by photovoltaic and diesel generator systems: Energy management and size optimization by a new approach for a stand-alone application," Energy, Elsevier, vol. 122(C), pages 542-551.
  84. Chen, Jun & Garcia, Humberto E., 2016. "Economic optimization of operations for hybrid energy systems under variable markets," Applied Energy, Elsevier, vol. 177(C), pages 11-24.
  85. Aghajani, G.R. & Shayanfar, H.A. & Shayeghi, H., 2017. "Demand side management in a smart micro-grid in the presence of renewable generation and demand response," Energy, Elsevier, vol. 126(C), pages 622-637.
  86. Wissem, Zghal & Gueorgui, Kantchev & Hédi, Kchaou, 2012. "Modeling and technical–economic optimization of an autonomous photovoltaic system," Energy, Elsevier, vol. 37(1), pages 263-272.
  87. González, Arnau & Riba, Jordi-Roger & Rius, Antoni & Puig, Rita, 2015. "Optimal sizing of a hybrid grid-connected photovoltaic and wind power system," Applied Energy, Elsevier, vol. 154(C), pages 752-762.
  88. Gonzalez, Arnau & Riba, Jordi-Roger & Esteban, Bernat & Rius, Antoni, 2018. "Environmental and cost optimal design of a biomass–Wind–PV electricity generation system," Renewable Energy, Elsevier, vol. 126(C), pages 420-430.
  89. Courtecuisse, Vincent & Sprooten, Jonathan & Robyns, Benoît & Petit, Marc & Francois, Bruno & Deuse, Jacques, 2010. "A methodology to design a fuzzy logic based supervision of Hybrid Renewable Energy Systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(2), pages 208-224.
  90. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2014. "Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong," Renewable Energy, Elsevier, vol. 69(C), pages 7-15.
  91. Yamegueu, D. & Azoumah, Y. & Py, X. & Zongo, N., 2011. "Experimental study of electricity generation by Solar PV/diesel hybrid systems without battery storage for off-grid areas," Renewable Energy, Elsevier, vol. 36(6), pages 1780-1787.
  92. Muh, Erasmus & Tabet, Fouzi, 2019. "Comparative analysis of hybrid renewable energy systems for off-grid applications in Southern Cameroons," Renewable Energy, Elsevier, vol. 135(C), pages 41-54.
  93. Abedini, Mohammad & Moradi, Mohammad H. & Hosseinian, S. Mahdi, 2016. "Optimal management of microgrids including renewable energy scources using GPSO-GM algorithm," Renewable Energy, Elsevier, vol. 90(C), pages 430-439.
  94. Shabir Ahmad & Israr Ullah & Faisal Jamil & DoHyeun Kim, 2020. "Toward the Optimal Operation of Hybrid Renewable Energy Resources in Microgrids," Energies, MDPI, vol. 13(20), pages 1-19, October.
  95. Gioutsos, Dean Marcus & Blok, Kornelis & van Velzen, Leonore & Moorman, Sjoerd, 2018. "Cost-optimal electricity systems with increasing renewable energy penetration for islands across the globe," Applied Energy, Elsevier, vol. 226(C), pages 437-449.
  96. González, Arnau & Riba, Jordi-Roger & Rius, Antoni, 2016. "Combined heat and power design based on environmental and cost criteria," Energy, Elsevier, vol. 116(P1), pages 922-932.
  97. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
  98. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Saad M. Abdullah & Makbul A. Ramli, 2023. "Sizing of Hybrid PV/Battery/Wind/Diesel Microgrid System Using an Improved Decomposition Multi-Objective Evolutionary Algorithm Considering Uncertainties and Battery Degradation," Sustainability, MDPI, vol. 15(14), pages 1-38, July.
  99. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2014. "Hybrid renewable energy systems for off-grid electric power: Review of substantial issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 527-539.
  100. Ackermann, Simon & Szabo, Andrei & Bamberger, Joachim & Steinke, Florian, 2022. "Design and optimization of performance guarantees for hybrid power plants," Energy, Elsevier, vol. 239(PA).
  101. Besagni, Giorgio & Croci, Lorenzo & Nesa, Riccardo & Molinaroli, Luca, 2019. "Field study of a novel solar-assisted dual-source multifunctional heat pump," Renewable Energy, Elsevier, vol. 132(C), pages 1185-1215.
  102. Hatti, M. & Meharrar, A. & Tioursi, M., 2011. "Power management strategy in the alternative energy photovoltaic/PEM Fuel Cell hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5104-5110.
  103. Marko Jelić & Marko Batić & Nikola Tomašević, 2021. "Demand-Side Flexibility Impact on Prosumer Energy System Planning," Energies, MDPI, vol. 14(21), pages 1-32, October.
  104. Sorrenti, Ilaria & Harild Rasmussen, Theis Bo & You, Shi & Wu, Qiuwei, 2022. "The role of power-to-X in hybrid renewable energy systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
  105. Nandi, Sanjoy Kumar & Ghosh, Himangshu Ranjan, 2010. "Prospect of wind–PV-battery hybrid power system as an alternative to grid extension in Bangladesh," Energy, Elsevier, vol. 35(7), pages 3040-3047.
  106. Caresana, F. & Pelagalli, L. & Comodi, G. & Renzi, M., 2014. "Microturbogas cogeneration systems for distributed generation: Effects of ambient temperature on global performance and components’ behavior," Applied Energy, Elsevier, vol. 124(C), pages 17-27.
  107. Rahimi, Sahand & Meratizaman, Mousa & Monadizadeh, Sina & Amidpour, Majid, 2014. "Techno-economic analysis of wind turbine–PEM (polymer electrolyte membrane) fuel cell hybrid system in standalone area," Energy, Elsevier, vol. 67(C), pages 381-396.
  108. Loy-Benitez, Jorge & Safder, Usman & Nguyen, Hai-Tra & Li, Qian & Woo, TaeYong & Yoo, ChangKyoo, 2021. "Techno-economic assessment and smart management of an integrated fuel cell-based energy system with absorption chiller for power, hydrogen, heating, and cooling in an electrified railway network," Energy, Elsevier, vol. 233(C).
  109. Wu, Wei & Christiana, Veni Indah & Chen, Shin-An & Hwang, Jenn-Jiang, 2015. "Design and techno-economic optimization of a stand-alone PV (photovoltaic)/FC (fuel cell)/battery hybrid power system connected to a wastewater-to-hydrogen processor," Energy, Elsevier, vol. 84(C), pages 462-472.
  110. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
  111. Lauren E. Natividad & Pablo Benalcazar, 2023. "Hybrid Renewable Energy Systems for Sustainable Rural Development: Perspectives and Challenges in Energy Systems Modeling," Energies, MDPI, vol. 16(3), pages 1-15, January.
  112. Cuesta, M.A. & Castillo-Calzadilla, T. & Borges, C.E., 2020. "A critical analysis on hybrid renewable energy modeling tools: An emerging opportunity to include social indicators to optimise systems in small communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
  113. Zamani-Dehkordi, Payam & Shafiee, Soroush & Rakai, Logan & Knight, Andrew M. & Zareipour, Hamidreza, 2017. "Price impact assessment for large-scale merchant energy storage facilities," Energy, Elsevier, vol. 125(C), pages 27-43.
  114. Ramli, Makbul A.M. & Bouchekara, H.R.E.H. & Alghamdi, Abdulsalam S., 2018. "Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 121(C), pages 400-411.
  115. Husein, Munir & Chung, Il-Yop, 2018. "Optimal design and financial feasibility of a university campus microgrid considering renewable energy incentives," Applied Energy, Elsevier, vol. 225(C), pages 273-289.
  116. Ismail Marouani & Tawfik Guesmi & Hsan Hadj Abdallah & Badr M. Alshammari & Khalid Alqunun & Ahmed S. Alshammari & Salem Rahmani, 2022. "Combined Economic Emission Dispatch with and without Consideration of PV and Wind Energy by Using Various Optimization Techniques: A Review," Energies, MDPI, vol. 15(12), pages 1-35, June.
  117. Ferrer-Martí, L. & Domenech, B. & García-Villoria, A. & Pastor, R., 2013. "A MILP model to design hybrid wind–photovoltaic isolated rural electrification projects in developing countries," European Journal of Operational Research, Elsevier, vol. 226(2), pages 293-300.
  118. Fadaee, M. & Radzi, M.A.M., 2012. "Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3364-3369.
  119. Konneh, Keifa Vamba & Masrur, Hasan & Konneh, David A. & Senjyu, Tomonobu, 2022. "Independent or complementary power system configuration: A decision making approach for sustainable electrification of an urban environment in Sierra Leone," Energy, Elsevier, vol. 239(PD).
  120. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2217-2235.
  121. Mikkola, Jani & Lund, Peter D., 2014. "Models for generating place and time dependent urban energy demand profiles," Applied Energy, Elsevier, vol. 130(C), pages 256-264.
  122. Ali M. Jasim & Basil H. Jasim & Habib Kraiem & Aymen Flah, 2022. "A Multi-Objective Demand/Generation Scheduling Model-Based Microgrid Energy Management System," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
  123. Das, Aurobi & Balakrishnan, V., 2012. "Sustainable energy future via grid interactive operation of spv system at isolated remote island," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5430-5442.
  124. Yanine, Franco F. & Sauma, Enzo E., 2013. "Review of grid-tie micro-generation systems without energy storage: Towards a new approach to sustainable hybrid energy systems linked to energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 60-95.
  125. Huang, Zishuo & Yu, Hang & Chu, Xiangyang & Peng, Zhenwei, 2018. "A novel optimization model based on game tree for multi-energy conversion systems," Energy, Elsevier, vol. 150(C), pages 109-121.
  126. Bernal-Agustín, José L. & Dufo-López, Rodolfo, 2009. "Simulation and optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2111-2118, October.
  127. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
  128. Fathima, A. Hina & Palanisamy, K., 2015. "Optimization in microgrids with hybrid energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 431-446.
  129. Haydn I. Furlonge, 2012. "Economic Considerations for Renewable Energy Application in Trinidad and Tobago's Power Sector," Energy & Environment, , vol. 23(1), pages 33-50, January.
  130. Rezzouk, H. & Mellit, A., 2015. "Feasibility study and sensitivity analysis of a stand-alone photovoltaic–diesel–battery hybrid energy system in the north of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1134-1150.
  131. Yang, Yuqi & Zhou, Jianzhong & Liu, Guangbiao & Mo, Li & Wang, Yongqiang & Jia, Benjun & He, Feifei, 2020. "Multi-plan formulation of hydropower generation considering uncertainty of wind power," Applied Energy, Elsevier, vol. 260(C).
  132. Md. Arif Hossain & Ashik Ahmed & Shafiqur Rahman Tito & Razzaqul Ahshan & Taiyeb Hasan Sakib & Sarvar Hussain Nengroo, 2022. "Multi-Objective Hybrid Optimization for Optimal Sizing of a Hybrid Renewable Power System for Home Applications," Energies, MDPI, vol. 16(1), pages 1-19, December.
  133. Scheubel, Christopher & Zipperle, Thomas & Tzscheutschler, Peter, 2017. "Modeling of industrial-scale hybrid renewable energy systems (HRES) – The profitability of decentralized supply for industry," Renewable Energy, Elsevier, vol. 108(C), pages 52-63.
  134. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhou, Yanlai & Gao, Shida & Li, He, 2018. "Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1341-1352.
  135. Donghun Lee & Kwanho Kim, 2019. "Recurrent Neural Network-Based Hourly Prediction of Photovoltaic Power Output Using Meteorological Information," Energies, MDPI, vol. 12(2), pages 1-22, January.
  136. Chochowski, Andrzej & Obstawski, Paweł, 2017. "The use of thermal-electric analogy in solar collector thermal state analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 397-409.
  137. Ramli, Makbul A.M. & Hiendro, Ayong & Sedraoui, Khaled & Twaha, Ssennoga, 2015. "Optimal sizing of grid-connected photovoltaic energy system in Saudi Arabia," Renewable Energy, Elsevier, vol. 75(C), pages 489-495.
  138. Luickx, Patrick J. & Delarue, Erik D. & D'haeseleer, William D., 2010. "Impact of large amounts of wind power on the operation of an electricity generation system: Belgian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2019-2028, September.
  139. Mahto, Tarkeshwar & Mukherjee, V., 2015. "Energy storage systems for mitigating the variability of isolated hybrid power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1564-1577.
  140. Nemati, Mohsen & Braun, Martin & Tenbohlen, Stefan, 2018. "Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming," Applied Energy, Elsevier, vol. 210(C), pages 944-963.
  141. Acuña, Luceny Guzmán & Padilla, Ricardo Vasquez & Mercado, Alcides Santander, 2017. "Measuring reliability of hybrid photovoltaic-wind energy systems: A new indicator," Renewable Energy, Elsevier, vol. 106(C), pages 68-77.
  142. Biswas, Partha P. & Suganthan, P.N. & Wu, Guohua & Amaratunga, Gehan A.J., 2019. "Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 132(C), pages 425-438.
  143. Fahd A. Alturki & Emad Mahrous Awwad, 2021. "Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems," Energies, MDPI, vol. 14(2), pages 1-20, January.
  144. Sharma, Rakhi & Tiwari, G.N., 2012. "Technical performance evaluation of stand-alone photovoltaic array for outdoor field conditions of New Delhi," Applied Energy, Elsevier, vol. 92(C), pages 644-652.
  145. Bundhoo, Zumar M.A., 2018. "Renewable energy exploitation in the small island developing state of Mauritius: Current practice and future potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2029-2038.
  146. Rouholamini, Mehdi & Mohammadian, Mohsen, 2016. "Heuristic-based power management of a grid-connected hybrid energy system combined with hydrogen storage," Renewable Energy, Elsevier, vol. 96(PA), pages 354-365.
  147. Perera, A.T.D. & Nik, Vahid M. & Mauree, Dasaraden & Scartezzini, Jean-Louis, 2017. "Electrical hubs: An effective way to integrate non-dispatchable renewable energy sources with minimum impact to the grid," Applied Energy, Elsevier, vol. 190(C), pages 232-248.
  148. Zayed, Mohamed E. & Zhao, Jun & Li, Wenjia & Elsheikh, Ammar H. & Elaziz, Mohamed Abd, 2021. "A hybrid adaptive neuro-fuzzy inference system integrated with equilibrium optimizer algorithm for predicting the energetic performance of solar dish collector," Energy, Elsevier, vol. 235(C).
  149. Chowdhury, Tamal & Chowdhury, Hemal & Miskat, Monirul Islam & Chowdhury, Piyal & Sait, Sadiq M. & Thirugnanasambandam, M. & Saidur, R., 2020. "Developing and evaluating a stand-alone hybrid energy system for Rohingya refugee community in Bangladesh," Energy, Elsevier, vol. 191(C).
  150. Vieira, Filipe & Ramos, Helena M., 2009. "Optimization of operational planning for wind/hydro hybrid water supply systems," Renewable Energy, Elsevier, vol. 34(3), pages 928-936.
  151. Sudhanshu Ranjan & Smriti Jaiswal & Abdul Latif & Dulal Chandra Das & Nidul Sinha & S. M. Suhail Hussain & Taha Selim Ustun, 2021. "Isolated and Interconnected Multi-Area Hybrid Power Systems: A Review on Control Strategies," Energies, MDPI, vol. 14(24), pages 1-20, December.
  152. Rohani, Golbarg & Nour, Mutasim, 2014. "Techno-economical analysis of stand-alone hybrid renewable power system for Ras Musherib in United Arab Emirates," Energy, Elsevier, vol. 64(C), pages 828-841.
  153. Chua, K.J. & Yang, W.M. & Er, S.S. & Ho, C.A., 2014. "Sustainable energy systems for a remote island community," Applied Energy, Elsevier, vol. 113(C), pages 1752-1763.
  154. Subhadra, Bobban G., 2011. "Macro-level integrated renewable energy production schemes for sustainable development," Energy Policy, Elsevier, vol. 39(4), pages 2193-2196, April.
  155. Li, He & Liu, Pan & Guo, Shenglian & Cheng, Lei & Huang, Kangdi & Feng, Maoyuan & He, Shaokun & Ming, Bo, 2021. "Deriving adaptive long-term complementary operating rules for a large-scale hydro-photovoltaic hybrid power plant using ensemble Kalman filter," Applied Energy, Elsevier, vol. 301(C).
  156. Xu, Jiuping & Li, Li & Zheng, Bobo, 2016. "Wind energy generation technological paradigm diffusion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 436-449.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.