IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v37y2009i12p5249-5259.html
   My bibliography  Save this item

Large blackouts in North America: Historical trends and policy implications

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Adriana Mar & Pedro Pereira & João F. Martins, 2019. "A Survey on Power Grid Faults and Their Origins: A Contribution to Improving Power Grid Resilience," Energies, MDPI, vol. 12(24), pages 1-21, December.
  2. Eto, Joseph H. & LaCommare, Kristina H. & Larsen, Peter & Todd, Annika & Fisher, Emily, 2012. "Distribution-level electricity reliability: Temporal trends using statistical analysis," Energy Policy, Elsevier, vol. 49(C), pages 243-252.
  3. Helga Habis & Dávid Csercsik, 2015. "Cooperation with Externalities and Uncertainty," Networks and Spatial Economics, Springer, vol. 15(1), pages 1-16, March.
  4. Graziano, Marcello & Gunther, Peter & Gallaher, Adam & Carstensen, Fred V. & Becker, Brian, 2020. "The wider regional benefits of power grids improved resilience through tree-trimming operations evidences from Connecticut, USA," Energy Policy, Elsevier, vol. 138(C).
  5. Meier, Alan & Ueno, Tsuyoshi & Pritoni, Marco, 2019. "Using data from connected thermostats to track large power outages in the United States," Applied Energy, Elsevier, vol. 256(C).
  6. Bo, Zeng & Shaojie, Ouyang & Jianhua, Zhang & Hui, Shi & Geng, Wu & Ming, Zeng, 2015. "An analysis of previous blackouts in the world: Lessons for China׳s power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1151-1163.
  7. Kelly Klima & M. Morgan, 2015. "Ice storm frequencies in a warmer climate," Climatic Change, Springer, vol. 133(2), pages 209-222, November.
  8. Evan Mills & Richard B Jones, 2016. "An Insurance Perspective on U.S. Electric Grid Disruption Costs," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 41(4), pages 555-586, October.
  9. Hassan Haes Alhelou & Mohamad Esmail Hamedani-Golshan & Takawira Cuthbert Njenda & Pierluigi Siano, 2019. "A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges," Energies, MDPI, vol. 12(4), pages 1-28, February.
  10. Jasiūnas, Justinas & Lund, Peter D. & Mikkola, Jani, 2021. "Energy system resilience – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
  11. Künneke, Rolf & Groenewegen, John & Ménard, Claude, 2010. "Aligning modes of organization with technology: Critical transactions in the reform of infrastructures," Journal of Economic Behavior & Organization, Elsevier, vol. 75(3), pages 494-505, September.
  12. Paul Nduhuura & Matthias Garschagen & Abdellatif Zerga, 2020. "Mapping and Spatial Analysis of Electricity Load Shedding Experiences: A Case Study of Communities in Accra, Ghana," Energies, MDPI, vol. 13(17), pages 1-26, August.
  13. Shen, Lijuan & Tang, Loon Ching, 2019. "Enhancing resilience analysis of power systems using robust estimation," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 134-142.
  14. Mukherjee, Sayanti & Nateghi, Roshanak & Hastak, Makarand, 2018. "A multi-hazard approach to assess severe weather-induced major power outage risks in the U.S," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 283-305.
  15. Zhang, Lijun & Xia, Xiaohua & Zhang, Jiangfeng, 2014. "Improving energy efficiency of cyclone circuits in coal beneficiation plants by pump-storage systems," Applied Energy, Elsevier, vol. 119(C), pages 306-313.
  16. Larsen, Peter H. & Boehlert, Brent & Eto, Joseph & Hamachi-LaCommare, Kristina & Martinich, Jeremy & Rennels, Lisa, 2018. "Projecting future costs to U.S. electric utility customers from power interruptions," Energy, Elsevier, vol. 147(C), pages 1256-1277.
  17. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  18. Maliszewski, Paul J. & Larson, Elisabeth K. & Perrings, Charles, 2012. "Environmental determinants of unscheduled residential outages in the electrical power distribution of Phoenix, Arizona," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 161-171.
  19. Dunn, Laurel N. & Sohn, Michael D. & LaCommare, Kristina Hamachi & Eto, Joseph H., 2019. "Exploratory analysis of high-resolution power interruption data reveals spatial and temporal heterogeneity in electric grid reliability," Energy Policy, Elsevier, vol. 129(C), pages 206-214.
  20. Ding, Ning & Duan, Jinhui & Xue, Song & Zeng, Ming & Shen, Jianfei, 2015. "Overall review of peaking power in China: Status quo, barriers and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 503-516.
  21. Nikolai Voropai, 2020. "Electric Power System Transformations: A Review of Main Prospects and Challenges," Energies, MDPI, vol. 13(21), pages 1-16, October.
  22. Xu, Jing & Ye, Meng & Peng, Xianyi & Li, Zhi, 2019. "Influential factor analysis of China's unsustainable electric power system: A case study of Chengdu Electric Bureau," Energy Policy, Elsevier, vol. 129(C), pages 975-984.
  23. Hou, Guangyang & Muraleetharan, Kanthasamy K. & Panchalogaranjan, Vinushika & Moses, Paul & Javid, Amir & Al-Dakheeli, Hussein & Bulut, Rifat & Campos, Richard & Harvey, P. Scott & Miller, Gerald & Bo, 2023. "Resilience assessment and enhancement evaluation of power distribution systems subjected to ice storms," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
  24. Shield, Stephen A. & Quiring, Steven M. & Pino, Jordan V. & Buckstaff, Ken, 2021. "Major impacts of weather events on the electrical power delivery system in the United States," Energy, Elsevier, vol. 218(C).
  25. Chen, Haoling & Zhao, Tongtiegang, 2020. "Modeling power loss during blackouts in China using non-stationary generalized extreme value distribution," Energy, Elsevier, vol. 195(C).
  26. Mudasser, Muhammad & Yiridoe, Emmanuel K. & Corscadden, Kenneth, 2015. "Cost-benefit analysis of grid-connected wind–biogas hybrid energy production, by turbine capacity and site," Renewable Energy, Elsevier, vol. 80(C), pages 573-582.
  27. Seppänen, Hannes & Luokkala, Pekka & Zhang, Zhe & Torkki, Paulus & Virrantaus, Kirsi, 2018. "Critical infrastructure vulnerability—A method for identifying the infrastructure service failure interdependencies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 25-38.
  28. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
  29. Lueken, Roger & Apt, Jay & Sowell, Fallaw, 2016. "Robust resource adequacy planning in the face of coal retirements," Energy Policy, Elsevier, vol. 88(C), pages 371-388.
  30. Huang, Wei & Zhang, Tianyi & Yao, Xinwei, 2022. "Optimization for sequential communication line attack in interdependent power-communication network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
  31. Harker Steele, Amanda J. & Burnett, J. Wesley & Bergstrom, John C., 2021. "The impact of variable renewable energy resources on power system reliability," Energy Policy, Elsevier, vol. 151(C).
  32. Johansson, Bengt, 2013. "A broadened typology on energy and security," Energy, Elsevier, vol. 53(C), pages 199-205.
  33. Dariusz Majchrzak & Krzysztof Michalski & Jacek Reginia-Zacharski, 2021. "Readiness of the Polish Crisis Management System to Respond to Long-Term, Large-Scale Power Shortages and Failures (Blackouts)," Energies, MDPI, vol. 14(24), pages 1-33, December.
  34. Dowds, Jonathan & Hines, Paul & Ryan, Todd & Buchanan, William & Kirby, Elizabeth & Apt, Jay & Jaramillo, Paulina, 2015. "A review of large-scale wind integration studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 768-794.
  35. Sayanti Mukherjee & Roshanak Nateghi, 2019. "A Data‐Driven Approach to Assessing Supply Inadequacy Risks Due to Climate‐Induced Shifts in Electricity Demand," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 673-694, March.
  36. Vivian Do & Heather McBrien & Nina M. Flores & Alexander J. Northrop & Jeffrey Schlegelmilch & Mathew V. Kiang & Joan A. Casey, 2023. "Spatiotemporal distribution of power outages with climate events and social vulnerability in the USA," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  37. Ian Dobson & Janghoon Kim & Kevin R. Wierzbicki, 2010. "Testing Branching Process Estimators of Cascading Failure with Data from a Simulation of Transmission Line Outages," Risk Analysis, John Wiley & Sons, vol. 30(4), pages 650-662, April.
  38. Larsen, Peter H. & Lawson, Megan & LaCommare, Kristina H. & Eto, Joseph H., 2020. "Severe weather, utility spending, and the long-term reliability of the U.S. power system," Energy, Elsevier, vol. 198(C).
  39. Xiaoxiao Guo & Yanghong Tan & Feng Wang, 2020. "Modeling and Fault Propagation Analysis of Cyber–Physical Power System," Energies, MDPI, vol. 13(3), pages 1-22, January.
  40. David Ward, 2013. "The effect of weather on grid systems and the reliability of electricity supply," Climatic Change, Springer, vol. 121(1), pages 103-113, November.
  41. Tara C. Walsh & David W. Wanik & Emmanouil N. Anagnostou & Jonathan E. Mellor, 2020. "Estimated Time to Restoration of Hurricane Sandy in a Future Climate," Sustainability, MDPI, vol. 12(16), pages 1-27, August.
  42. Mohammad Mehdi Davari & Hossein Ameli & Mohammad Taghi Ameli & Goran Strbac, 2022. "Impact of Local Emergency Demand Response Programs on the Operation of Electricity and Gas Systems," Energies, MDPI, vol. 15(6), pages 1-20, March.
  43. Jufri, Fauzan Hanif & Widiputra, Victor & Jung, Jaesung, 2019. "State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies," Applied Energy, Elsevier, vol. 239(C), pages 1049-1065.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.