IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v129y2019icp206-214.html
   My bibliography  Save this article

Exploratory analysis of high-resolution power interruption data reveals spatial and temporal heterogeneity in electric grid reliability

Author

Listed:
  • Dunn, Laurel N.
  • Sohn, Michael D.
  • LaCommare, Kristina Hamachi
  • Eto, Joseph H.

Abstract

Modern grid monitoring equipment enables utilities to collect detailed records of power interruptions. These data are aggregated to compute publicly reported metrics describing high-level characteristics of grid performance. The current work explores the depth of insights that can be gained from public data, and the implications of losing visibility into heterogeneity in grid performance through aggregation. We present an exploratory analysis examining three years of high-resolution power interruption data collected by archiving information posted in real-time on the public-facing website of a utility in the Western United States. We report on the size, frequency and duration of individual power interruptions, and on spatio-temporal variability in aggregate reliability metrics. Our results show that metrics of grid performance can vary spatially and temporally by orders of magnitude, revealing heterogeneity that is not evidenced in publicly reported metrics. We show that limited access to granular information presents a substantive barrier to conducting detailed policy analysis, and discuss how more widespread data access could help to answer questions that remain unanswered in the literature to date. Given open questions about whether grid performance is adequate to support societal needs, we recommend establishing pathways to make high-resolution power interruption data available to support policy research.

Suggested Citation

  • Dunn, Laurel N. & Sohn, Michael D. & LaCommare, Kristina Hamachi & Eto, Joseph H., 2019. "Exploratory analysis of high-resolution power interruption data reveals spatial and temporal heterogeneity in electric grid reliability," Energy Policy, Elsevier, vol. 129(C), pages 206-214.
  • Handle: RePEc:eee:enepol:v:129:y:2019:i:c:p:206-214
    DOI: 10.1016/j.enpol.2019.01.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519300424
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.01.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hines, Paul & Apt, Jay & Talukdar, Sarosh, 2009. "Large blackouts in North America: Historical trends and policy implications," Energy Policy, Elsevier, vol. 37(12), pages 5249-5259, December.
    2. Carlsson, Fredrik & Martinsson, Peter, 2008. "Does it matter when a power outage occurs? -- A choice experiment study on the willingness to pay to avoid power outages," Energy Economics, Elsevier, vol. 30(3), pages 1232-1245, May.
    3. Larsen, Peter H., 2016. "A method to estimate the costs and benefits of undergrounding electricity transmission and distribution lines," Energy Economics, Elsevier, vol. 60(C), pages 47-61.
    4. Stephanie E. Chang & Timothy L. McDaniels & Joey Mikawoz & Krista Peterson, 2007. "Infrastructure failure interdependencies in extreme events: power outage consequences in the 1998 Ice Storm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(2), pages 337-358, May.
    5. Chuanyi Ji & Yun Wei & Henry Mei & Jorge Calzada & Matthew Carey & Steve Church & Timothy Hayes & Brian Nugent & Gregory Stella & Matthew Wallace & Joe White & Robert Wilcox, 2016. "Large-scale data analysis of power grid resilience across multiple US service regions," Nature Energy, Nature, vol. 1(5), pages 1-8, May.
    6. LaCommare, Kristina Hamachi & Eto, Joseph H., 2006. "Cost of power interruptions to electricity consumers in the United States (US)," Energy, Elsevier, vol. 31(12), pages 1845-1855.
    7. Roshanak Nateghi & Seth Guikema & Steven Quiring, 2014. "Forecasting hurricane-induced power outage durations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1795-1811, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siliang Guo & Yanhua Diao & Junliang Du, 2022. "Coupling Coordination Measurement and Evaluation of Urban Digitalization and Green Development in China," IJERPH, MDPI, vol. 19(22), pages 1-32, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Maliszewski & Elisabeth Larson & Charles Perrings, 2013. "Valuing the Reliability of the Electrical Power Infrastructure: A Two-stage Hedonic Approach," Urban Studies, Urban Studies Journal Limited, vol. 50(1), pages 72-87, January.
    2. Maliszewski, Paul J. & Larson, Elisabeth K. & Perrings, Charles, 2012. "Environmental determinants of unscheduled residential outages in the electrical power distribution of Phoenix, Arizona," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 161-171.
    3. Larsen, Peter H. & Boehlert, Brent & Eto, Joseph & Hamachi-LaCommare, Kristina & Martinich, Jeremy & Rennels, Lisa, 2018. "Projecting future costs to U.S. electric utility customers from power interruptions," Energy, Elsevier, vol. 147(C), pages 1256-1277.
    4. Elie Bouri & Joseph El Assad, 2016. "The Lebanese Electricity Woes: An Estimation of the Economical Costs of Power Interruptions," Energies, MDPI, vol. 9(8), pages 1-12, July.
    5. Kairui Feng & Min Ouyang & Ning Lin, 2022. "Tropical cyclone-blackout-heatwave compound hazard resilience in a changing climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Lee, Juyong & Cho, Youngsang, 2022. "National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model?," Energy, Elsevier, vol. 239(PD).
    7. Kelsea Best & Siobhan Kerr & Allison Reilly & Anand Patwardhan & Deb Niemeier & Seth Guikema, 2023. "Spatial regression identifies socioeconomic inequality in multi-stage power outage recovery after Hurricane Isaac," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 851-873, May.
    8. Ali Asgary & Yeganeh Mousavi-Jahromi, 2011. "Power Outage, Business Continuity and Businesses' Choices of Power Outage Mitigation Measures," American Journal of Economics and Business Administration, Science Publications, vol. 3(2), pages 312-320, April.
    9. Abdullah, Sabah & Mariel, Petr, 2010. "Choice experiment study on the willingness to pay to improve electricity services," Energy Policy, Elsevier, vol. 38(8), pages 4570-4581, August.
    10. Mukherjee, Sayanti & Nateghi, Roshanak & Hastak, Makarand, 2018. "A multi-hazard approach to assess severe weather-induced major power outage risks in the U.S," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 283-305.
    11. Evan Mills & Richard B Jones, 2016. "An Insurance Perspective on U.S. Electric Grid Disruption Costs," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 41(4), pages 555-586, October.
    12. Graziano, Marcello & Gunther, Peter & Gallaher, Adam & Carstensen, Fred V. & Becker, Brian, 2020. "The wider regional benefits of power grids improved resilience through tree-trimming operations evidences from Connecticut, USA," Energy Policy, Elsevier, vol. 138(C).
    13. Clementina Bruno & Ugo Finardi & Azahara Lorite-Espejo & Elena Ragazzi, 2016. "Emerging costs deriving from blackouts for individual firms: evidence from an Italian case study," quaderni IRCrES 201601, CNR-IRCrES Research Institute on Sustainable Economic Growth - Moncalieri (TO) ITALY - former Institute for Economic Research on Firms and Growth - Torino (TO) ITALY.
    14. Odin Foldvik Eikeland & Filippo Maria Bianchi & Inga Setså Holmstrand & Sigurd Bakkejord & Sergio Santos & Matteo Chiesa, 2022. "Uncovering Contributing Factors to Interruptions in the Power Grid: An Arctic Case," Energies, MDPI, vol. 15(1), pages 1-21, January.
    15. Hou, Hui & Liu, Chao & Wei, Ruizeng & He, Huan & Wang, Lei & Li, Weibo, 2023. "Outage duration prediction under typhoon disaster with stacking ensemble learning," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    16. Anu Narayanan & M. Granger Morgan, 2012. "Sustaining Critical Social Services During Extended Regional Power Blackouts," Risk Analysis, John Wiley & Sons, vol. 32(7), pages 1183-1193, July.
    17. Nikolai Voropai, 2020. "Electric Power System Transformations: A Review of Main Prospects and Challenges," Energies, MDPI, vol. 13(21), pages 1-16, October.
    18. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    19. Johansson, Jonas & Hassel, Henrik, 2010. "An approach for modelling interdependent infrastructures in the context of vulnerability analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1335-1344.
    20. McNair, Ben J. & Hensher, David A. & Bennett, Jeff, 2010. "Modelling heterogeneity in response behaviour towards a sequence of discrete choice questions: a latent class approach," MPRA Paper 23427, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:129:y:2019:i:c:p:206-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.