IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i16p6502-d397907.html
   My bibliography  Save this article

Estimated Time to Restoration of Hurricane Sandy in a Future Climate

Author

Listed:
  • Tara C. Walsh

    (Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269, USA)

  • David W. Wanik

    (Operations and Information Management, University of Connecticut, Stamford, CT 06901, USA)

  • Emmanouil N. Anagnostou

    (Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269, USA)

  • Jonathan E. Mellor

    (Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269, USA)

Abstract

Power outage restoration following extreme storms is a complicated process that couples engineering processes and human decisions. Emergency managers typically rely on past experiences and have limited access to computer simulations to aid in decision-making. Climate scientists predict that although hurricane frequency may decrease, the intensity of storms may increase. Increased damage from hurricanes will result in new restoration challenges that emergency managers may not have experience solving. Our study uses agent-based modeling (ABM) to determine how restoration might have been impacted for 30 different scenarios of Hurricane Sandy for a climate in 2112 (Sandy2112). These Sandy2112 scenarios were obtained from a previous study that modeled how outages from Hurricane Sandy in 2012 might have been affected in the future as climate change intensified both wind and precipitation hazards. As the number of outages increases, so does the expected estimated time to restoration for each storm. The impact of increasing crews is also studied to determine the relationship between the number of crews and outage durations (or restoration curves). Both the number of outages and the number of crews impact the variability in time to restoration. Our results can help emergency managers and policy makers plan for future hurricanes that are likely to become stronger and more impactful to critical infrastructure.

Suggested Citation

  • Tara C. Walsh & David W. Wanik & Emmanouil N. Anagnostou & Jonathan E. Mellor, 2020. "Estimated Time to Restoration of Hurricane Sandy in a Future Climate," Sustainability, MDPI, vol. 12(16), pages 1-27, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6502-:d:397907
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/16/6502/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/16/6502/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roshanak Nateghi & Seth Guikema & Steven M. Quiring, 2014. "Power Outage Estimation for Tropical Cyclones: Improved Accuracy with Simpler Models," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1069-1078, June.
    2. D. Wanik & E. Anagnostou & B. Hartman & M. Frediani & M. Astitha, 2015. "Storm outage modeling for an electric distribution network in Northeastern USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1359-1384, November.
    3. An, Li, 2012. "Modeling human decisions in coupled human and natural systems: Review of agent-based models," Ecological Modelling, Elsevier, vol. 229(C), pages 25-36.
    4. Feifei Yang & David W. Wanik & Diego Cerrai & Md Abul Ehsan Bhuiyan & Emmanouil N. Anagnostou, 2020. "Quantifying Uncertainty in Machine Learning-Based Power Outage Prediction Model Training: A Tool for Sustainable Storm Restoration," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    5. Hines, Paul & Apt, Jay & Talukdar, Sarosh, 2009. "Large blackouts in North America: Historical trends and policy implications," Energy Policy, Elsevier, vol. 37(12), pages 5249-5259, December.
    6. Berk A. Alpay & David Wanik & Peter Watson & Diego Cerrai & Guannan Liang & Emmanouil Anagnostou, 2020. "Dynamic Modeling of Power Outages Caused by Thunderstorms," Forecasting, MDPI, vol. 2(2), pages 1-12, May.
    7. Han, Seung-Ryong & Guikema, Seth D. & Quiring, Steven M. & Lee, Kyung-Ho & Rosowsky, David & Davidson, Rachel A., 2009. "Estimating the spatial distribution of power outages during hurricanes in the Gulf coast region," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 199-210.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hughes, William & Zhang, Wei & Bagtzoglou, Amvrossios C. & Wanik, David & Pensado, Osvaldo & Yuan, Hao & Zhang, Jintao, 2021. "Damage modeling framework for resilience hardening strategy for overhead power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Berk A. Alpay & David Wanik & Peter Watson & Diego Cerrai & Guannan Liang & Emmanouil Anagnostou, 2020. "Dynamic Modeling of Power Outages Caused by Thunderstorms," Forecasting, MDPI, vol. 2(2), pages 1-12, May.
    3. Hughes, William & Zhang, Wei & Bagtzoglou, Amvrossios C. & Wanik, David & Pensado, Osvaldo & Yuan, Hao & Zhang, Jintao, 2021. "Damage modeling framework for resilience hardening strategy for overhead power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Dimitris N. Trakas & Mathaios Panteli & Nikos D. Hatziargyriou & Pierluigi Mancarella, 2019. "Spatial Risk Analysis of Power Systems Resilience During Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 195-211, January.
    5. Feifei Yang & David W. Wanik & Diego Cerrai & Md Abul Ehsan Bhuiyan & Emmanouil N. Anagnostou, 2020. "Quantifying Uncertainty in Machine Learning-Based Power Outage Prediction Model Training: A Tool for Sustainable Storm Restoration," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    6. Peter L. Watson & Marika Koukoula & Emmanouil Anagnostou, 2021. "Influence of the Characteristics of Weather Information in a Thunderstorm-Related Power Outage Prediction System," Forecasting, MDPI, vol. 3(3), pages 1-20, August.
    7. Feifei Yang & Diego Cerrai & Emmanouil N. Anagnostou, 2021. "The Effect of Lead-Time Weather Forecast Uncertainty on Outage Prediction Modeling," Forecasting, MDPI, vol. 3(3), pages 1-16, July.
    8. Olukunle O. Owolabi & Deborah A. Sunter, 2022. "Bayesian Optimization and Hierarchical Forecasting of Non-Weather-Related Electric Power Outages," Energies, MDPI, vol. 15(6), pages 1-22, March.
    9. Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    10. Gina L. Tonn & Seth D. Guikema & Celso M. Ferreira & Steven M. Quiring, 2016. "Hurricane Isaac: A Longitudinal Analysis of Storm Characteristics and Power Outage Risk," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1936-1947, October.
    11. Shield, Stephen A. & Quiring, Steven M. & Pino, Jordan V. & Buckstaff, Ken, 2021. "Major impacts of weather events on the electrical power delivery system in the United States," Energy, Elsevier, vol. 218(C).
    12. Wenjuan Sun & Paolo Bocchini & Brian D. Davison, 2020. "Applications of artificial intelligence for disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2631-2689, September.
    13. D. Brent McRoberts & Steven M. Quiring & Seth D. Guikema, 2018. "Improving Hurricane Power Outage Prediction Models Through the Inclusion of Local Environmental Factors," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2722-2737, December.
    14. Mukherjee, Sayanti & Nateghi, Roshanak & Hastak, Makarand, 2018. "A multi-hazard approach to assess severe weather-induced major power outage risks in the U.S," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 283-305.
    15. Otto, Räisänen & Susanne, Suvanto & Jouni, Haapaniemi & Jukka, Lassila, 2023. "Crown snow load outage risk model for overhead lines," Applied Energy, Elsevier, vol. 343(C).
    16. Jichao He & David W. Wanik & Brian M. Hartman & Emmanouil N. Anagnostou & Marina Astitha & Maria E. B. Frediani, 2017. "Nonparametric Tree‐Based Predictive Modeling of Storm Outages on an Electric Distribution Network," Risk Analysis, John Wiley & Sons, vol. 37(3), pages 441-458, March.
    17. Maliszewski, Paul J. & Larson, Elisabeth K. & Perrings, Charles, 2012. "Environmental determinants of unscheduled residential outages in the electrical power distribution of Phoenix, Arizona," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 161-171.
    18. Xue, Jiayue & Mohammadi, Farshad & Li, Xin & Sahraei-Ardakani, Mostafa & Ou, Ge & Pu, Zhaoxia, 2020. "Impact of transmission tower-line interaction to the bulk power system during hurricane," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    19. Gallaher, Adam & Graziano, Marcello & Fiaschetti, Maurizio, 2021. "Legacy and shockwaves: A spatial analysis of strengthening resilience of the power grid in Connecticut," Energy Policy, Elsevier, vol. 159(C).
    20. Hou, Hui & Liu, Chao & Wei, Ruizeng & He, Huan & Wang, Lei & Li, Weibo, 2023. "Outage duration prediction under typhoon disaster with stacking ensemble learning," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6502-:d:397907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.