IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i4p1525-d322116.html
   My bibliography  Save this article

Quantifying Uncertainty in Machine Learning-Based Power Outage Prediction Model Training: A Tool for Sustainable Storm Restoration

Author

Listed:
  • Feifei Yang

    (Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269, USA)

  • David W. Wanik

    (Department of Operations and Information Management, University of Connecticut, Stamford, CT 06901, USA)

  • Diego Cerrai

    (Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269, USA)

  • Md Abul Ehsan Bhuiyan

    (Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT 06269, USA)

  • Emmanouil N. Anagnostou

    (Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269, USA)

Abstract

A growing number of electricity utilities use machine learning-based outage prediction models (OPMs) to predict the impact of storms on their networks for sustainable management. The accuracy of OPM predictions is sensitive to sample size and event severity representativeness in the training dataset, the extent of which has not yet been quantified. This study devised a randomized and out-of-sample validation experiment to quantify an OPM’s prediction uncertainty to different training sample sizes and event severity representativeness. The study showed random error decreasing by more than 100% for sample sizes ranging from 10 to 80 extratropical events, and by 32% for sample sizes from 10 to 40 thunderstorms. This study quantified the minimum number of sample size for the OPM attaining an acceptable prediction performance. The results demonstrated that conditioning the training of the OPM to a subset of events representative of the predicted event’s severity reduced the underestimation bias exhibited in high-impact events and the overestimation bias in low-impact ones. We used cross entropy (CE) to quantify the relatedness of weather variable distribution between the training dataset and the forecasted event.

Suggested Citation

  • Feifei Yang & David W. Wanik & Diego Cerrai & Md Abul Ehsan Bhuiyan & Emmanouil N. Anagnostou, 2020. "Quantifying Uncertainty in Machine Learning-Based Power Outage Prediction Model Training: A Tool for Sustainable Storm Restoration," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1525-:d:322116
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/4/1525/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/4/1525/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seung‐Ryong Han & Seth D. Guikema & Steven M. Quiring, 2009. "Improving the Predictive Accuracy of Hurricane Power Outage Forecasts Using Generalized Additive Models," Risk Analysis, John Wiley & Sons, vol. 29(10), pages 1443-1453, October.
    2. Jichao He & David W. Wanik & Brian M. Hartman & Emmanouil N. Anagnostou & Marina Astitha & Maria E. B. Frediani, 2017. "Nonparametric Tree‐Based Predictive Modeling of Storm Outages on an Electric Distribution Network," Risk Analysis, John Wiley & Sons, vol. 37(3), pages 441-458, March.
    3. Han, Seung-Ryong & Guikema, Seth D. & Quiring, Steven M. & Lee, Kyung-Ho & Rosowsky, David & Davidson, Rachel A., 2009. "Estimating the spatial distribution of power outages during hurricanes in the Gulf coast region," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 199-210.
    4. Roshanak Nateghi & Seth Guikema & Steven M. Quiring, 2014. "Power Outage Estimation for Tropical Cyclones: Improved Accuracy with Simpler Models," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1069-1078, June.
    5. Kaijian He & Rui Zha & Jun Wu & Kin Keung Lai, 2016. "Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price," Sustainability, MDPI, vol. 8(4), pages 1-11, April.
    6. D. Wanik & E. Anagnostou & B. Hartman & M. Frediani & M. Astitha, 2015. "Storm outage modeling for an electric distribution network in Northeastern USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1359-1384, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Abul Ehsan Bhuiyan & Feifei Yang & Nishan Kumar Biswas & Saiful Haque Rahat & Tahneen Jahan Neelam, 2020. "Machine Learning-Based Error Modeling to Improve GPM IMERG Precipitation Product over the Brahmaputra River Basin," Forecasting, MDPI, vol. 2(3), pages 1-19, July.
    2. Hongchen Li & Zhong Yang & Jiaming Han & Shangxiang Lai & Qiuyan Zhang & Chi Zhang & Qianhui Fang & Guoxiong Hu, 2020. "TL-Net: A Novel Network for Transmission Line Scenes Classification," Energies, MDPI, vol. 13(15), pages 1-15, July.
    3. Olukunle O. Owolabi & Deborah A. Sunter, 2022. "Bayesian Optimization and Hierarchical Forecasting of Non-Weather-Related Electric Power Outages," Energies, MDPI, vol. 15(6), pages 1-22, March.
    4. Berk A. Alpay & David Wanik & Peter Watson & Diego Cerrai & Guannan Liang & Emmanouil Anagnostou, 2020. "Dynamic Modeling of Power Outages Caused by Thunderstorms," Forecasting, MDPI, vol. 2(2), pages 1-12, May.
    5. Hughes, William & Zhang, Wei & Bagtzoglou, Amvrossios C. & Wanik, David & Pensado, Osvaldo & Yuan, Hao & Zhang, Jintao, 2021. "Damage modeling framework for resilience hardening strategy for overhead power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    6. Feifei Yang & Diego Cerrai & Emmanouil N. Anagnostou, 2021. "The Effect of Lead-Time Weather Forecast Uncertainty on Outage Prediction Modeling," Forecasting, MDPI, vol. 3(3), pages 1-16, July.
    7. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    8. Tara C. Walsh & David W. Wanik & Emmanouil N. Anagnostou & Jonathan E. Mellor, 2020. "Estimated Time to Restoration of Hurricane Sandy in a Future Climate," Sustainability, MDPI, vol. 12(16), pages 1-27, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    2. Dimitris N. Trakas & Mathaios Panteli & Nikos D. Hatziargyriou & Pierluigi Mancarella, 2019. "Spatial Risk Analysis of Power Systems Resilience During Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 195-211, January.
    3. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Berk A. Alpay & David Wanik & Peter Watson & Diego Cerrai & Guannan Liang & Emmanouil Anagnostou, 2020. "Dynamic Modeling of Power Outages Caused by Thunderstorms," Forecasting, MDPI, vol. 2(2), pages 1-12, May.
    5. Otto, Räisänen & Susanne, Suvanto & Jouni, Haapaniemi & Jukka, Lassila, 2023. "Crown snow load outage risk model for overhead lines," Applied Energy, Elsevier, vol. 343(C).
    6. Hughes, William & Zhang, Wei & Bagtzoglou, Amvrossios C. & Wanik, David & Pensado, Osvaldo & Yuan, Hao & Zhang, Jintao, 2021. "Damage modeling framework for resilience hardening strategy for overhead power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Gina L. Tonn & Seth D. Guikema & Celso M. Ferreira & Steven M. Quiring, 2016. "Hurricane Isaac: A Longitudinal Analysis of Storm Characteristics and Power Outage Risk," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1936-1947, October.
    8. Tara C. Walsh & David W. Wanik & Emmanouil N. Anagnostou & Jonathan E. Mellor, 2020. "Estimated Time to Restoration of Hurricane Sandy in a Future Climate," Sustainability, MDPI, vol. 12(16), pages 1-27, August.
    9. D. Brent McRoberts & Steven M. Quiring & Seth D. Guikema, 2018. "Improving Hurricane Power Outage Prediction Models Through the Inclusion of Local Environmental Factors," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2722-2737, December.
    10. Hou, Hui & Liu, Chao & Wei, Ruizeng & He, Huan & Wang, Lei & Li, Weibo, 2023. "Outage duration prediction under typhoon disaster with stacking ensemble learning," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    11. Seung‐Ryong Han & David Rosowsky & Seth Guikema, 2014. "Integrating Models and Data to Estimate the Structural Reliability of Utility Poles During Hurricanes," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1079-1094, June.
    12. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
    13. Hughes, William & Watson, Peter L. & Cerrai, Diego & Zhang, Xinxuan & Bagtzoglou, Amvrossios & Zhang, Wei & Anagnostou, Emmanouil, 2024. "Assessing grid hardening strategies to improve power system performance during storms using a hybrid mechanistic-machine learning outage prediction model," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    14. Roshanak Nateghi & Seth D. Guikema & Steven M. Quiring, 2011. "Comparison and Validation of Statistical Methods for Predicting Power Outage Durations in the Event of Hurricanes," Risk Analysis, John Wiley & Sons, vol. 31(12), pages 1897-1906, December.
    15. Wenjuan Sun & Paolo Bocchini & Brian D. Davison, 2020. "Applications of artificial intelligence for disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2631-2689, September.
    16. Seth D. Guikema & Steven M. Quiring & Seung‐Ryong Han, 2010. "Prestorm Estimation of Hurricane Damage to Electric Power Distribution Systems," Risk Analysis, John Wiley & Sons, vol. 30(12), pages 1744-1752, December.
    17. Hui Hou & Shiwen Yu & Hongbin Wang & Yong Huang & Hao Wu & Yan Xu & Xianqiang Li & Hao Geng, 2019. "Risk Assessment and Its Visualization of Power Tower under Typhoon Disaster Based on Machine Learning Algorithms," Energies, MDPI, vol. 12(2), pages 1-23, January.
    18. Royce A. Francis & Srinivas Reddy Geedipally & Seth D. Guikema & Soma Sekhar Dhavala & Dominique Lord & Sarah LaRocca, 2012. "Characterizing the Performance of the Conway‐Maxwell Poisson Generalized Linear Model," Risk Analysis, John Wiley & Sons, vol. 32(1), pages 167-183, January.
    19. Roshanak Nateghi & Seth Guikema & Steven M. Quiring, 2014. "Power Outage Estimation for Tropical Cyclones: Improved Accuracy with Simpler Models," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1069-1078, June.
    20. Jichao He & David W. Wanik & Brian M. Hartman & Emmanouil N. Anagnostou & Marina Astitha & Maria E. B. Frediani, 2017. "Nonparametric Tree‐Based Predictive Modeling of Storm Outages on an Electric Distribution Network," Risk Analysis, John Wiley & Sons, vol. 37(3), pages 441-458, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1525-:d:322116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.