IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for "Full Bayesian Inference for GARCH and EGARCH Models"

by Vrontos, I D & Dellaportas, P & Politis, D N

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as
in new window


  1. Xiaochun Liu, 2016. "Markov switching quantile autoregression," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 356-395, November.
  2. Xibin Zhang & Maxwell L. King, 2011. "Bayesian semiparametric GARCH models," Monash Econometrics and Business Statistics Working Papers 24/11, Monash University, Department of Econometrics and Business Statistics.
  3. Massimiliano Caporin & Loriana Pelizzon & Francesco Ravazzolo & Roberto Rigobon, 2012. "Measuring Sovereign Contagion in Europe," Working Papers 0009, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
  4. Chow, William W. & Fung, Michael K., 2008. "Volatility of stock price as predicted by patent data: An MGARCH perspective," Journal of Empirical Finance, Elsevier, vol. 15(1), pages 64-79, January.
  5. Ausin, Maria Concepcion & Galeano, Pedro, 2007. "Bayesian estimation of the Gaussian mixture GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2636-2652, February.
  6. Sofia Anyfantaki & Antonis Demos, 2016. "Estimation and Properties of a Time-Varying EGARCH(1,1) in Mean Model," Econometric Reviews, Taylor & Francis Journals, vol. 35(2), pages 293-310, February.
  7. Yu Yue & Paul Speckman & Dongchu Sun, 2012. "Priors for Bayesian adaptive spline smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 577-613, June.
  8. Lanne, Markku & Luoto, Jani, 2008. "Robustness of the risk-return relationship in the U.S. stock market," Finance Research Letters, Elsevier, vol. 5(2), pages 118-127, June.
  9. So, Mike K.P. & Chen, Cathy W.S. & Lee, Jen-Yu & Chang, Yi-Ping, 2008. "An empirical evaluation of fat-tailed distributions in modeling financial time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(1), pages 96-108.
  10. Miazhynskaia, Tatiana & Fruhwirth-Schnatter, Sylvia & Dorffner, Georg, 2006. "Bayesian testing for non-linearity in volatility modeling," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 2029-2042, December.
  11. Chen, Cathy W.S. & Gerlach, Richard & So, Mike K.P., 2006. "Comparison of nonnested asymmetric heteroskedastic models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2164-2178, December.
  12. Xibin Zhang & Maxwell L. King, 2013. "Gaussian kernel GARCH models," Monash Econometrics and Business Statistics Working Papers 19/13, Monash University, Department of Econometrics and Business Statistics.
  13. Sarantis Tsiaplias, 2007. "A Metropolis-in-Gibbs Sampler for Estimating Equity Market Factors," Melbourne Institute Working Paper Series wp2007n18, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
  14. Norberto Rodríguez, 2000. "Bayesian Model Estimation and Selection for the Weekly Colombian Exchange Rate," Borradores de Economia 161, Banco de la Republica de Colombia.
  15. Chen, Cathy W.S. & Gerlach, Richard H. & Tai, Amanda P.J., 2008. "Testing for nonlinearity in mean and volatility for heteroskedastic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 489-499.
  16. Cathy W. S. Chen & Mike K. P. So & Ming-Tien Chen, 2005. "A Bayesian threshold nonlinearity test for financial time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(1), pages 61-75.
  17. Tse, Y.K. & Zhang, Bill & Yu, Jun, 2002. "Estimation of Hyperbolic Diffusion using MCMC Method," Working Papers 182, Department of Economics, The University of Auckland.
  18. Ardia, David & Hoogerheide, Lennart F., 2010. "Efficient Bayesian estimation and combination of GARCH-type models," MPRA Paper 22919, University Library of Munich, Germany.
  19. Jacek Osiewalski & Mateusz Pipien, 2004. "Bayesian Comparison of Bivariate GARCH Processes in the Presence of an Exogenous Variable," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 6, pages 25-36.
  20. Olivier Wintenberger, 2013. "Continuous Invertibility and Stable QML Estimation of the EGARCH(1,1) Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 846-867, December.
  21. Tatiana Miazhynskaia & Georg Dorffner, 2006. "A comparison of Bayesian model selection based on MCMC with an application to GARCH-type models," Statistical Papers, Springer, vol. 47(4), pages 525-549, October.
  22. Wolfgang Aussenegg & Tatiana Miazhynskaia, 2006. "Uncertainty in Value-at-risk Estimates under Parametric and Non-parametric Modeling," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(3), pages 243-264, September.
  23. Jun Yu, 2004. "Asymmetric Response of Volatility: Evidence from Stochastic Volatility Models and Realized Volatility," Working Papers 24-2004, Singapore Management University, School of Economics.
  24. Zellner, Arnold & Ando, Tomohiro, 2010. "Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting," International Journal of Forecasting, Elsevier, vol. 26(2), pages 413-434, April.
  25. Chun Liu & John M. Maheu, 2009. "Forecasting realized volatility: a Bayesian model-averaging approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 709-733.
  26. K. Diamantopoulos & I. Vrontos, 2010. "A Student-t Full Factor Multivariate GARCH Model," Computational Economics, Springer;Society for Computational Economics, vol. 35(1), pages 63-83, January.
  27. Todd E. Clark & Francesco Ravazzolo, 2012. "The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility," Working Paper 1218, Federal Reserve Bank of Cleveland.
  28. repec:syb:wpbsba:03/2011 is not listed on IDEAS
  29. Giannikis, D. & Vrontos, I.D. & Dellaportas, P., 2008. "Modelling nonlinearities and heavy tails via threshold normal mixture GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1549-1571, January.
  30. Osiewalski, Jacek & Pipien, Mateusz, 2004. "Bayesian comparison of bivariate ARCH-type models for the main exchange rates in Poland," Journal of Econometrics, Elsevier, vol. 123(2), pages 371-391, December.
  31. Jouchi Nakajima, 2008. "EGARCH and Stochastic Volatility: Modeling Jumps and Heavy-tails for Stock Returns," IMES Discussion Paper Series 08-E-23, Institute for Monetary and Economic Studies, Bank of Japan.
  32. Karlis, Dimitris, 2002. "An EM type algorithm for maximum likelihood estimation of the normal-inverse Gaussian distribution," Statistics & Probability Letters, Elsevier, vol. 57(1), pages 43-52, March.
  33. Munehisa Kasuya & Izumi Takagawa, 2001. "Model Uncertainty of Real Exchange Rate Forecast over Mid-term Horizons," Bank of Japan Working Paper Series Research and Statistics D, Bank of Japan.
  34. Ausin, M. Concepcion & Lopes, Hedibert F., 2010. "Time-varying joint distribution through copulas," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2383-2399, November.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.