IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login

Citations for "Waiting-times and returns in high-frequency financial data: an empirical study"

by M. Raberto & E. Scalas & F. Mainardi

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Bernardo Spagnolo & Davide Valenti, 2008. "Volatility Effects on the Escape Time in Financial Market Models," Papers 0810.1625, arXiv.org.
  2. Shapoval, A., 2010. "Prediction problem for target events based on the inter-event waiting time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5145-5154.
  3. Mark M. Meerschaert & Enrico Scalas, 2006. "Coupled continuous time random walks in finance," Papers physics/0608281, arXiv.org.
  4. Raberto, Marco & Cincotti, Silvano, 2005. "Modeling and simulation of a double auction artificial financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 34-45.
  5. Przemyslaw Repetowicz & Peter Richmond, 2004. "Pricing of options on stocks driven by multi-dimensional operator stable Levy processes," Papers math-ph/0412071, arXiv.org, revised Feb 2005.
  6. Schumer, Rina & Baeumer, Boris & Meerschaert, Mark M., 2011. "Extremal behavior of a coupled continuous time random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(3), pages 505-511.
  7. Straka, P. & Henry, B.I., 2011. "Lagging and leading coupled continuous time random walks, renewal times and their joint limits," Stochastic Processes and their Applications, Elsevier, vol. 121(2), pages 324-336, February.
  8. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2008. "Triangular array limits for continuous time random walks," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1606-1633, September.
  9. Greenwood, Priscilla E. & Schick, Anton & Wefelmeyer, Wolfgang, 2011. "Estimating the inter-arrival time density of Markov renewal processes under structural assumptions on the transition distribution," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 277-282, February.
  10. Jaume Masoliver & Miquel Montero & Josep Perello, . "The continuous time random walk formalism in financial markets," Modeling, Computing, and Mastering Complexity 2003 24, Society for Computational Economics.
  11. Scalas, Enrico & Politi, Mauro, 2012. "A parsimonious model for intraday European option pricing," Economics Discussion Papers 2012-14, Kiel Institute for the World Economy.
  12. Guglielmo D'Amico & Filippo Petroni, 2011. "A semi-Markov model with memory for price changes," Papers 1109.4259, arXiv.org, revised Dec 2011.
  13. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
  14. Zhang, Z.Q. & Wei, T., 2013. "An optimal regularization method for space-fractional backward diffusion problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 92(C), pages 14-27.
  15. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.
  16. D’Amico, Guglielmo & Janssen, Jacques & Manca, Raimondo, 2009. "European and American options: The semi-Markov case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(15), pages 3181-3194.
  17. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2008. "Scaling in the distribution of intertrade durations of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5818-5825.
  18. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
  19. Guglielmo D'Amico & Filippo Petroni, 2012. "Weighted-indexed semi-Markov models for modeling financial returns," Papers 1205.2551, arXiv.org, revised Jun 2012.
  20. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
  21. Guglielmo D'Amico & Filippo Petroni, 2013. "Multivariate high-frequency financial data via semi-Markov processes," Papers 1305.0436, arXiv.org.
  22. Scalas, Enrico & Viles, Noèlia, 2014. "A functional limit theorem for stochastic integrals driven by a time-changed symmetric α-stable Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 385-410.
  23. Enrico Scalas, 2005. "Five Years of Continuous-time Random Walks in Econophysics," Finance 0501005, EconWPA.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.