IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i10p1742-d819184.html
   My bibliography  Save this article

Regularization Error Analysis for a Sideways Problem of the 2D Nonhomogeneous Time-Fractional Diffusion Equation

Author

Listed:
  • Yonggang Chen

    (College of Science, China University of Petroleun East China, Qingdao 257099, China)

  • Yu Qiao

    (Department of Mathematics, Northwest Normal University, Lanzhou 730070, China)

  • Xiangtuan Xiong

    (Department of Mathematics, Northwest Normal University, Lanzhou 730070, China)

Abstract

The inverse and ill-posed problem of determining a solute concentration for the two-dimensional nonhomogeneous fractional diffusion equation is investigated. This model is much worse than its homogeneous counterpart as the source term appears. We propose a modified kernel regularization technique for the stable numerical reconstruction of the solution. The convergence estimates under both a priori and a posteriori parameter choice rules are proven.

Suggested Citation

  • Yonggang Chen & Yu Qiao & Xiangtuan Xiong, 2022. "Regularization Error Analysis for a Sideways Problem of the 2D Nonhomogeneous Time-Fractional Diffusion Equation," Mathematics, MDPI, vol. 10(10), pages 1-14, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1742-:d:819184
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/10/1742/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/10/1742/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Songshu Liu & Lixin Feng, 2018. "A Revised Tikhonov Regularization Method for a Cauchy Problem of Two-Dimensional Heat Conduction Equation," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-8, May.
    2. Raberto, Marco & Scalas, Enrico & Mainardi, Francesco, 2002. "Waiting-times and returns in high-frequency financial data: an empirical study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 749-755.
    3. Songshu Liu & Lixin Feng, 2020. "An Inverse Problem for a Two-Dimensional Time-Fractional Sideways Heat Equation," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-13, March.
    4. Li, Changpin & Wang, Zhen, 2020. "The discontinuous Galerkin finite element method for Caputo-type nonlinear conservation law," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 169(C), pages 51-73.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    2. Staccioli, Jacopo & Napoletano, Mauro, 2021. "An agent-based model of intra-day financial markets dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 331-348.
    3. Li, Changpin & Li, Dongxia & Wang, Zhen, 2021. "L1/LDG method for the generalized time-fractional Burgers equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 357-378.
    4. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    5. Enrico Scalas & Rudolf Gorenflo & Hugh Luckock & Francesco Mainardi & Maurizio Mantelli & Marco Raberto, 2004. "Anomalous waiting times in high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 695-702.
    6. Berardi, Luca & Serva, Maurizio, 2005. "Time and foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 403-412.
    7. Masoliver, Jaume & Montero, Miquel & Perello, Josep & Weiss, George H., 2006. "The continuous time random walk formalism in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 61(4), pages 577-598, December.
    8. Guglielmo D'Amico & Filippo Petroni, 2020. "A micro-to-macro approach to returns, volumes and waiting times," Papers 2007.06262, arXiv.org.
    9. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    10. repec:hal:spmain:info:hdl:2441/5mqflt6amg8gab4rlqn6sbko4b is not listed on IDEAS
    11. Scalas, Enrico & Viles, Noèlia, 2014. "A functional limit theorem for stochastic integrals driven by a time-changed symmetric α-stable Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 385-410.
    12. Cen, Zhongdi & Le, Anbo & Xu, Aimin, 2017. "A robust numerical method for a fractional differential equation," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 445-452.
    13. Meerschaert, Mark M. & Mortensen, Jeff & Wheatcraft, Stephen W., 2006. "Fractional vector calculus for fractional advection–dispersion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 181-190.
    14. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    15. Scalas, Enrico, 2007. "Mixtures of compound Poisson processes as models of tick-by-tick financial data," Chaos, Solitons & Fractals, Elsevier, vol. 34(1), pages 33-40.
    16. Wael W. Mohammed & Meshari Alesemi & Sahar Albosaily & Naveed Iqbal & M. El-Morshedy, 2021. "The Exact Solutions of Stochastic Fractional-Space Kuramoto-Sivashinsky Equation by Using ( G ′ G )-Expansion Method," Mathematics, MDPI, vol. 9(21), pages 1-10, October.
    17. Cappellini, Alessandro & Ferraris, Gianluigi, 2007. "Waiting Times in Simulated Stock Markets," MPRA Paper 7324, University Library of Munich, Germany.
    18. Guglielmo D'Amico & Filippo Petroni, 2011. "A semi-Markov model with memory for price changes," Papers 1109.4259, arXiv.org, revised Dec 2011.
    19. Tarasov, Vasily E., 2020. "Fractional econophysics: Market price dynamics with memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    20. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2008. "Scaling in the distribution of intertrade durations of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5818-5825.
    21. Vasily E. Tarasov & Valentina V. Tarasova, 2019. "Dynamic Keynesian Model of Economic Growth with Memory and Lag," Mathematics, MDPI, vol. 7(2), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1742-:d:819184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.