IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4238420.html
   My bibliography  Save this article

A Second-Order Uniformly Stable Explicit Asymmetric Discretization Method for One-Dimensional Fractional Diffusion Equations

Author

Listed:
  • Lin Zhu

Abstract

Using the asymmetric discretization technique, an explicit finite difference scheme is constructed for one-dimensional spatial fractional diffusion equations (FDEs). The spatial fractional derivative is approximated by the weighted and shifted Grünwald difference operator. The scheme can be solved explicitly by calculating unknowns in the different nodal-point sequences at the odd time-step and the even time-step. The uniform stability is proven and the error between the discrete solution and analytical solution is theoretically estimated. Numerical examples are given to verify theoretical analysis.

Suggested Citation

  • Lin Zhu, 2019. "A Second-Order Uniformly Stable Explicit Asymmetric Discretization Method for One-Dimensional Fractional Diffusion Equations," Complexity, Hindawi, vol. 2019, pages 1-12, May.
  • Handle: RePEc:hin:complx:4238420
    DOI: 10.1155/2019/4238420
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/4238420.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/4238420.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/4238420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Raberto, Marco & Scalas, Enrico & Mainardi, Francesco, 2002. "Waiting-times and returns in high-frequency financial data: an empirical study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 749-755.
    2. Jhinga, Aman & Daftardar-Gejji, Varsha, 2018. "A new finite-difference predictor-corrector method for fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 418-432.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viktor Stojkoski & Trifce Sandev & Lasko Basnarkov & Ljupco Kocarev & Ralf Metzler, 2020. "Generalised geometric Brownian motion: Theory and applications to option pricing," Papers 2011.00312, arXiv.org.
    2. Treena Basu, 2015. "A Fast O ( N log N ) Finite Difference Method for the One-Dimensional Space-Fractional Diffusion Equation," Mathematics, MDPI, vol. 3(4), pages 1-13, October.
    3. Cappellini, Alessandro & Ferraris, Gianluigi, 2007. "Waiting Times in Simulated Stock Markets," MPRA Paper 7324, University Library of Munich, Germany.
    4. Shapoval, A., 2010. "Prediction problem for target events based on the inter-event waiting time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5145-5154.
    5. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    6. Torricelli, Lorenzo, 2020. "Trade duration risk in subdiffusive financial models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    7. Ponta, Linda & Trinh, Mailan & Raberto, Marco & Scalas, Enrico & Cincotti, Silvano, 2019. "Modeling non-stationarities in high-frequency financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 173-196.
    8. Wael W. Mohammed & Mohammed Alshammari & Clemente Cesarano & Sultan Albadrani & M. El-Morshedy, 2022. "Brownian Motion Effects on the Stabilization of Stochastic Solutions to Fractional Diffusion Equations with Polynomials," Mathematics, MDPI, vol. 10(9), pages 1-9, April.
    9. Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Dynamic intersectoral models with power-law memory," Papers 1712.09087, arXiv.org.
    10. Scalas, Enrico, 2007. "Mixtures of compound Poisson processes as models of tick-by-tick financial data," Chaos, Solitons & Fractals, Elsevier, vol. 34(1), pages 33-40.
    11. Staccioli, Jacopo & Napoletano, Mauro, 2021. "An agent-based model of intra-day financial markets dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 331-348.
    12. Schumer, Rina & Baeumer, Boris & Meerschaert, Mark M., 2011. "Extremal behavior of a coupled continuous time random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(3), pages 505-511.
    13. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2008. "Scaling in the distribution of intertrade durations of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5818-5825.
    14. Taohua Liu & Xiucao Yin & Yinghao Chen & Muzhou Hou, 2023. "A Second-Order Accurate Numerical Approximation for a Two-Sided Space-Fractional Diffusion Equation," Mathematics, MDPI, vol. 11(8), pages 1-15, April.
    15. Langlands, T.A.M., 2006. "Solution of a modified fractional diffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 136-144.
    16. Wael W. Mohammed & Naveed Iqbal & Thongchai Botmart, 2022. "Additive Noise Effects on the Stabilization of Fractional-Space Diffusion Equation Solutions," Mathematics, MDPI, vol. 10(1), pages 1-14, January.
    17. Yang, Hong & Lao, Cheng-Xue & She, Zi-Hang, 2023. "Fast solution methods for Riesz space fractional diffusion equations with non-separable coefficients," Applied Mathematics and Computation, Elsevier, vol. 445(C).
    18. Hamid, M. & Usman, M. & Haq, R.U. & Wang, W., 2020. "A Chelyshkov polynomial based algorithm to analyze the transport dynamics and anomalous diffusion in fractional model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    19. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    20. Zhang, Hui & Jiang, Xiaoyun & Yang, Xiu, 2018. "A time-space spectral method for the time-space fractional Fokker–Planck equation and its inverse problem," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 302-318.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4238420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.