IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v118y2008i9p1606-1633.html
   My bibliography  Save this article

Triangular array limits for continuous time random walks

Author

Listed:
  • Meerschaert, Mark M.
  • Scheffler, Hans-Peter

Abstract

A continuous time random walk (CTRW) is a random walk subordinated to a renewal process, used in physics to model anomalous diffusion. Transition densities of CTRW scaling limits solve fractional diffusion equations. This paper develops more general limit theorems, based on triangular arrays, for sequences of CTRW processes. The array elements consist of random vectors that incorporate both the random walk jump variable and the waiting time preceding that jump. The CTRW limit process consists of a vector-valued Lévy process whose time parameter is replaced by the hitting time process of a real-valued nondecreasing Lévy process (subordinator). We provide a formula for the distribution of the CTRW limit process and show that their densities solve abstract space-time diffusion equations. Applications to finance are discussed, and a density formula for the hitting time of any strictly increasing subordinator is developed.

Suggested Citation

  • Meerschaert, Mark M. & Scheffler, Hans-Peter, 2008. "Triangular array limits for continuous time random walks," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1606-1633, September.
  • Handle: RePEc:eee:spapps:v:118:y:2008:i:9:p:1606-1633
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00171-8
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baeumer, B. & Benson, D.A. & Meerschaert, M.M., 2005. "Advection and dispersion in time and space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 245-262.
    2. Meerschaert, Mark M. & Scalas, Enrico, 2006. "Coupled continuous time random walks in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 114-118.
    3. Loretan, Mico & Phillips, Peter C. B., 1994. "Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets," Journal of Empirical Finance, Elsevier, pages 211-248.
    4. Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.
    5. Scalas, Enrico & Gorenflo, Rudolf & Mainardi, Francesco, 2000. "Fractional calculus and continuous-time finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 376-384.
    6. Raberto, Marco & Scalas, Enrico & Mainardi, Francesco, 2002. "Waiting-times and returns in high-frequency financial data: an empirical study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 749-755.
    7. Bondesson, Lennart & Kristiansen, Gundorph K. & Steutel, Fred W., 1996. "Infinite divisibility of random variables and their integer parts," Statistics & Probability Letters, Elsevier, vol. 28(3), pages 271-278, July.
    8. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters,in: THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78 World Scientific Publishing Co. Pte. Ltd..
    9. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2006. "Stochastic model for ultraslow diffusion," Stochastic Processes and their Applications, Elsevier, vol. 116(9), pages 1215-1235, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meerschaert, Mark M. & Nane, Erkan & Xiao, Yimin, 2013. "Fractal dimension results for continuous time random walks," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1083-1093.
    2. Kumar, A. & Vellaisamy, P., 2015. "Inverse tempered stable subordinators," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 134-141.
    3. Straka, P. & Henry, B.I., 2011. "Lagging and leading coupled continuous time random walks, renewal times and their joint limits," Stochastic Processes and their Applications, Elsevier, vol. 121(2), pages 324-336, February.
    4. Barczyk, A. & Kern, P., 2013. "Scaling limits of coupled continuous time random walks and residual order statistics through marked point processes," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 796-812.
    5. Kumar, A. & Nane, Erkan & Vellaisamy, P., 2011. "Time-changed Poisson processes," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1899-1910.
    6. Kobayashi, Kei, 2016. "Small ball probabilities for a class of time-changed self-similar processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 155-161.
    7. Kumar, A. & Wyłomańska, A. & Połoczański, R. & Sundar, S., 2017. "Fractional Brownian motion time-changed by gamma and inverse gamma process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 648-667.
    8. Cohen, Serge & Meerschaert, Mark M. & Rosinski, Jan, 2010. "Modeling and simulation with operator scaling," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2390-2411, December.
    9. Choe, Geon Ho & Lee, Dong Min, 2016. "Numerical computation of hitting time distributions of increasing Lévy processes," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 289-294.
    10. Mijena, Jebessa B. & Nane, Erkan, 2014. "Correlation structure of time-changed Pearson diffusions," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 68-77.
    11. D’Ovidio, Mirko, 2012. "From Sturm–Liouville problems to fractional and anomalous diffusions," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3513-3544.
    12. Fernandez-Anaya, G. & Valdes-Parada, F.J. & Alvarez-Ramirez, J., 2011. "On generalized fractional Cattaneo’s equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4198-4202.
    13. P. Escalona & F. Ordóñez & I. Kauak, 2017. "Critical level rationing in inventory systems with continuously distributed demand," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 273-301, January.
    14. Magdziarz, M. & Scheffler, H.P. & Straka, P. & Zebrowski, P., 2015. "Limit theorems and governing equations for Lévy walks," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4021-4038.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:118:y:2008:i:9:p:1606-1633. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.