IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v118y2008i9p1606-1633.html
   My bibliography  Save this article

Triangular array limits for continuous time random walks

Author

Listed:
  • Meerschaert, Mark M.
  • Scheffler, Hans-Peter

Abstract

A continuous time random walk (CTRW) is a random walk subordinated to a renewal process, used in physics to model anomalous diffusion. Transition densities of CTRW scaling limits solve fractional diffusion equations. This paper develops more general limit theorems, based on triangular arrays, for sequences of CTRW processes. The array elements consist of random vectors that incorporate both the random walk jump variable and the waiting time preceding that jump. The CTRW limit process consists of a vector-valued Lévy process whose time parameter is replaced by the hitting time process of a real-valued nondecreasing Lévy process (subordinator). We provide a formula for the distribution of the CTRW limit process and show that their densities solve abstract space-time diffusion equations. Applications to finance are discussed, and a density formula for the hitting time of any strictly increasing subordinator is developed.

Suggested Citation

  • Meerschaert, Mark M. & Scheffler, Hans-Peter, 2008. "Triangular array limits for continuous time random walks," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1606-1633, September.
  • Handle: RePEc:eee:spapps:v:118:y:2008:i:9:p:1606-1633
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00171-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Raberto, Marco & Scalas, Enrico & Mainardi, Francesco, 2002. "Waiting-times and returns in high-frequency financial data: an empirical study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 749-755.
    2. Scalas, Enrico & Gorenflo, Rudolf & Mainardi, Francesco, 2000. "Fractional calculus and continuous-time finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 376-384.
    3. Jansen, Dennis W & de Vries, Casper G, 1991. "On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspective," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 18-24, February.
    4. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2006. "Stochastic model for ultraslow diffusion," Stochastic Processes and their Applications, Elsevier, vol. 116(9), pages 1215-1235, September.
    5. Baeumer, B. & Benson, D.A. & Meerschaert, M.M., 2005. "Advection and dispersion in time and space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 245-262.
    6. Meerschaert, Mark M. & Scalas, Enrico, 2006. "Coupled continuous time random walks in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 114-118.
    7. Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.
    8. Loretan, Mico & Phillips, Peter C. B., 1994. "Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets," Journal of Empirical Finance, Elsevier, vol. 1(2), pages 211-248, January.
    9. Bondesson, Lennart & Kristiansen, Gundorph K. & Steutel, Fred W., 1996. "Infinite divisibility of random variables and their integer parts," Statistics & Probability Letters, Elsevier, vol. 28(3), pages 271-278, July.
    10. Mandelbrot, Benoit B, 1972. "Correction of an Error in "The Variation of Certain Speculative Prices" (1963)," The Journal of Business, University of Chicago Press, vol. 45(4), pages 542-543, October.
    11. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masoliver, Jaume & Montero, Miquel & Perello, Josep & Weiss, George H., 2006. "The continuous time random walk formalism in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 61(4), pages 577-598, December.
    2. Ponta, Linda & Trinh, Mailan & Raberto, Marco & Scalas, Enrico & Cincotti, Silvano, 2019. "Modeling non-stationarities in high-frequency financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 173-196.
    3. Repetowicz, Przemysław & Richmond, Peter, 2004. "Modeling of waiting times and price changes in currency exchange data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 677-693.
    4. Runde, Ralf & Scheffner, Axel, 1998. "On the existence of moments: With an application to German stock returns," Technical Reports 1998,25, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    5. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    6. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Scholarly Articles 2624460, Harvard University Department of Economics.
    7. Moore, Kyle & Sun, Pengfei & de Vries, Casper G. & Zhou, Chen, 2013. "The cross-section of tail risks in stock returns," MPRA Paper 45592, University Library of Munich, Germany.
    8. Salhi, Khaled & Deaconu, Madalina & Lejay, Antoine & Champagnat, Nicolas & Navet, Nicolas, 2016. "Regime switching model for financial data: Empirical risk analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 148-157.
    9. Longin, Francois, 2005. "The choice of the distribution of asset returns: How extreme value theory can help?," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 1017-1035, April.
    10. Ibragimov, Rustam, 2014. "On the robustness of location estimators in models of firm growth under heavy-tailedness," Journal of Econometrics, Elsevier, vol. 181(1), pages 25-33.
    11. Scalas, Enrico, 2007. "Mixtures of compound Poisson processes as models of tick-by-tick financial data," Chaos, Solitons & Fractals, Elsevier, vol. 34(1), pages 33-40.
    12. Andrea Morone, 2008. "Financial markets in the laboratory: an experimental analysis of some stylized facts," Quantitative Finance, Taylor & Francis Journals, vol. 8(5), pages 513-532.
    13. Rustam Ibragimov & Marat Ibragimov & Rufat Khamidov, 2010. "Measuring Inequality in CIS Countries: Theory and Empirics," wiiw Balkan Observatory Working Papers 88, The Vienna Institute for International Economic Studies, wiiw.
    14. Tarasov, Vasily E., 2020. "Fractional econophysics: Market price dynamics with memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    15. Francesco Mainardi, 2020. "On the Advent of Fractional Calculus in Econophysics via Continuous-Time Random Walk," Mathematics, MDPI, vol. 8(4), pages 1-9, April.
    16. Vasily E. Tarasov & Valentina V. Tarasova, 2019. "Dynamic Keynesian Model of Economic Growth with Memory and Lag," Mathematics, MDPI, vol. 7(2), pages 1-17, February.
    17. Iglesias, Emma M. & Linton, Oliver, 2009. "Estimation of tail thickness parameters from GJR-GARCH models," UC3M Working papers. Economics we094726, Universidad Carlos III de Madrid. Departamento de Economía.
    18. ROCKINGER, Michael & JONDEAU, Eric, 1999. "The Tail Behavior of Stock Returns: Emerging versus Mature Markets," HEC Research Papers Series 668, HEC Paris.
    19. Ibragimov, Rustam & Walden, Johan, 2008. "Portfolio diversification under local and moderate deviations from power laws," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 594-599, April.
    20. M. F. Omran, 1997. "Moment condition failure in stock returns: UK evidence," Applied Mathematical Finance, Taylor & Francis Journals, vol. 4(4), pages 201-206.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:118:y:2008:i:9:p:1606-1633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.