IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1312.3894.html
   My bibliography  Save this paper

Semi-Markov Models in High Frequency Finance: A Review

Author

Listed:
  • G. D'Amico
  • F. Petroni
  • F. Prattico

Abstract

In this paper we describe three stochastic models based on a semi-Markov chains approach and its generalizations to study the high frequency price dynamics of traded stocks. The three models are: a simple semi-Markov chain model, an indexed semi-Markov chain model and a weighted indexed semi-Markov chain model. We show, through Monte Carlo simulations, that the models are able to reproduce important stylized facts of financial time series as the persistence of volatility. In particular, we analyzed high frequency data from the Italian stock market from the first of January 2007 until end of December 2010 and we apply to it the semi-Markov chain model and the indexed semi-Markov chain model. The last model, instead, is applied to data from Italian and German stock markets from January 1, 2007 until the end of December 2010.

Suggested Citation

  • G. D'Amico & F. Petroni & F. Prattico, 2013. "Semi-Markov Models in High Frequency Finance: A Review," Papers 1312.3894, arXiv.org.
  • Handle: RePEc:arx:papers:1312.3894
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1312.3894
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Guglielmo D'Amico & Filippo Petroni & Flavio Prattico, 2013. "Wind speed modeled as an indexed semi‐Markov process," Environmetrics, John Wiley & Sons, Ltd., vol. 24(6), pages 367-376, September.
    2. D’Amico, Guglielmo & Janssen, Jacques & Manca, Raimondo, 2009. "European and American options: The semi-Markov case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(15), pages 3181-3194.
    3. D’Amico, Guglielmo & Petroni, Filippo, 2012. "A semi-Markov model for price returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4867-4876.
    4. Guglielmo D'Amico & Filippo Petroni, 2012. "Weighted-indexed semi-Markov models for modeling financial returns," Papers 1205.2551, arXiv.org, revised Jun 2012.
    5. F. Petroni & M. Serva, 2003. "Spot foreign exchange market and time series," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 34(4), pages 495-500, August.
    6. Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.
    7. Raberto, Marco & Scalas, Enrico & Mainardi, Francesco, 2002. "Waiting-times and returns in high-frequency financial data: an empirical study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 749-755.
    8. Guglielmo D'Amico & Filippo Petroni, 2011. "A semi-Markov model with memory for price changes," Papers 1109.4259, arXiv.org, revised Dec 2011.
    9. Ingve Simonsen & Mogens H. Jensen & Anders Johansen, 2002. "Optimal Investment Horizons," Papers cond-mat/0202352, arXiv.org.
    10. Jensen, M.H & Johansen, A & Petroni, F & Simonsen, I, 2004. "Inverse statistics in the foreign exchange market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(4), pages 678-684.
    11. D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2013. "First and second order semi-Markov chains for wind speed modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1194-1201.
    12. Richard B. Olsen & Ulrich A. Müller & Michel M. Dacorogna & Olivier V. Pictet & Rakhal R. Davé & Dominique M. Guillaume, 1997. "From the bird's eye to the microscope: A survey of new stylized facts of the intra-daily foreign exchange markets (*)," Finance and Stochastics, Springer, vol. 1(2), pages 95-129.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1312.3894. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.