IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1503.08032.html
   My bibliography  Save this paper

Observability of Market Daily Volatility

Author

Listed:
  • Filippo Petroni
  • Maurizio Serva

Abstract

We study the price dynamics of 65 stocks from the Dow Jones Composite Average from 1973 until 2014. We show that it is possible to define a Daily Market Volatility $\sigma(t)$ which is directly observable from data. This quantity is usually indirectly defined by $r(t)=\sigma(t) \omega(t)$ where the $r(t)$ are the daily returns of the market index and the $\omega(t)$ are i.i.d. random variables with vanishing average and unitary variance. The relation $r(t)=\sigma(t) \omega(t)$ alone is unable to give an operative definition of the index volatility, which remains unobservable. On the contrary, we show that using the whole information available in the market, the index volatility can be operatively defined and detected.

Suggested Citation

  • Filippo Petroni & Maurizio Serva, 2015. "Observability of Market Daily Volatility," Papers 1503.08032, arXiv.org.
  • Handle: RePEc:arx:papers:1503.08032
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1503.08032
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Baillie, Richard T & Bollerslev, Tim, 1994. "The long memory of the forward premium," Journal of International Money and Finance, Elsevier, vol. 13(5), pages 565-571, October.
    2. Pasquini, Michele & Serva, Maurizio, 1999. "Multiscaling and clustering of volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 269(1), pages 140-147.
    3. Crato, Nuno & de Lima, Pedro J. F., 1994. "Long-range dependence in the conditional variance of stock returns," Economics Letters, Elsevier, vol. 45(3), pages 281-285.
    4. D’Amico, Guglielmo & Petroni, Filippo, 2012. "A semi-Markov model for price returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4867-4876.
    5. Guglielmo D'Amico & Filippo Petroni, 2012. "Weighted-indexed semi-Markov models for modeling financial returns," Papers 1205.2551, arXiv.org, revised Jun 2012.
    6. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    7. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    8. M. Pasquini & M. Serva, 2000. "Clustering of volatility as a multiscale phenomenon," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 16(1), pages 195-201, July.
    9. Baviera, Roberto & Pasquini, Michele & Serva, Maurizio & Vergni, Davide & Vulpiani, Angelo, 2001. "Correlations and multi-affinity in high frequency financial datasets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 300(3), pages 551-557.
    10. Fabrizio Lillo & Rosario N. Mantegna, 2000. "Variety and Volatility in Financial Markets," Papers cond-mat/0006065, arXiv.org.
    11. Guglielmo D'Amico & Filippo Petroni, 2011. "A semi-Markov model with memory for price changes," Papers 1109.4259, arXiv.org, revised Dec 2011.
    12. Richard B. Olsen & Ulrich A. Müller & Michel M. Dacorogna & Olivier V. Pictet & Rakhal R. Davé & Dominique M. Guillaume, 1997. "From the bird's eye to the microscope: A survey of new stylized facts of the intra-daily foreign exchange markets (*)," Finance and Stochastics, Springer, vol. 1(2), pages 95-129.
    13. Pasquini, Michele & Serva, Maurizio, 1999. "Multiscale behaviour of volatility autocorrelations in a financial market," Economics Letters, Elsevier, vol. 65(3), pages 275-279, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1503.08032. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.