IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v267y2018i2p765-777.html
   My bibliography  Save this article

Copula based multivariate semi-Markov models with applications in high-frequency finance

Author

Listed:
  • D’Amico, Guglielmo
  • Petroni, Filippo

Abstract

We introduce a new multivariate model of multiple asset returns. Our model is based on weighted indexed semi-Markov chains to describe the single (marginals) asset returns, whereas the dependence structure among the considered assets is described by introducing copula functions. A real application of the proposed multivariate model is presented based on the evolution of 6 stocks from the Italian Stock Exchange. We provide empirical evidence that the model is able to correctly reproduce statistical regularities of multivariate real data such as the cross-correlation function, value-at-risk, marginal value-at-risk and conditional value-at-risk. The model is also used for volatility forecasting of each stock.

Suggested Citation

  • D’Amico, Guglielmo & Petroni, Filippo, 2018. "Copula based multivariate semi-Markov models with applications in high-frequency finance," European Journal of Operational Research, Elsevier, vol. 267(2), pages 765-777.
  • Handle: RePEc:eee:ejores:v:267:y:2018:i:2:p:765-777
    DOI: 10.1016/j.ejor.2017.12.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717311189
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.12.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guglielmo D'Amico & Filippo Petroni, 2012. "Weighted-indexed semi-Markov models for modeling financial returns," Papers 1205.2551, arXiv.org, revised Jun 2012.
    2. D’Amico, Guglielmo & Petroni, Filippo, 2012. "A semi-Markov model for price returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4867-4876.
    3. Lwin, Khin T. & Qu, Rong & MacCarthy, Bart L., 2017. "Mean-VaR portfolio optimization: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 260(2), pages 751-766.
    4. Scalas, Enrico & Gorenflo, Rudolf & Mainardi, Francesco, 2000. "Fractional calculus and continuous-time finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 376-384.
    5. W. Breymann & A. Dias & P. Embrechts, 2003. "Dependence structures for multivariate high-frequency data in finance," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 1-14.
    6. Guglielmo D'Amico & Filippo Petroni, 2011. "A semi-Markov model with memory for price changes," Papers 1109.4259, arXiv.org, revised Dec 2011.
    7. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    8. Chan, Joshua C.C. & Kroese, Dirk P., 2010. "Efficient estimation of large portfolio loss probabilities in t-copula models," European Journal of Operational Research, Elsevier, vol. 205(2), pages 361-367, September.
    9. Kakouris, Iakovos & Rustem, Berç, 2014. "Robust portfolio optimization with copulas," European Journal of Operational Research, Elsevier, vol. 235(1), pages 28-37.
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. Pietro Fodra & Huyên Pham, 2015. "Semi-Markov Model for Market Microstructure," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(3), pages 261-295, July.
    12. Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.
    13. Luc, BAUWENS & Nikolaus, HAUTSCH, 2006. "Modelling Financial High Frequency Data Using Point Processes," Discussion Papers (ECON - Département des Sciences Economiques) 2006039, Université catholique de Louvain, Département des Sciences Economiques.
    14. Renata Mansini & Włodzimierz Ogryczak & M. Speranza, 2007. "Conditional value at risk and related linear programming models for portfolio optimization," Annals of Operations Research, Springer, vol. 152(1), pages 227-256, July.
    15. Laih, Yih-Wenn, 2014. "Measuring rank correlation coefficients between financial time series: A GARCH-copula based sequence alignment algorithm," European Journal of Operational Research, Elsevier, vol. 232(2), pages 375-382.
    16. D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2014. "Wind speed and energy forecasting at different time scales: A nonparametric approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 59-66.
    17. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    18. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    19. Sak, Halis & Hörmann, Wolfgang & Leydold, Josef, 2010. "Efficient risk simulations for linear asset portfolios in the t-copula model," European Journal of Operational Research, Elsevier, vol. 202(3), pages 802-809, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D’Amico, Guglielmo & Gismondi, Fulvio & Petroni, Filippo & Prattico, Flavio, 2019. "Stock market daily volatility and information measures of predictability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 22-29.
    2. Guglielmo D'Amico & Filippo Petroni & Philippe Regnault & Stefania Scocchera & Loriano Storchi, 2019. "A copula based Markov Reward approach to the credit spread in European Union," Papers 1902.00691, arXiv.org.
    3. D’Amico, Guglielmo & Petroni, Filippo, 2023. "ROCOF of higher order for semi-Markov processes," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    4. Riccardo De Blasis, 2023. "Weighted-indexed semi-Markov model: calibration and application to financial modeling," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-16, December.
    5. Guglielmo D’Amico & Fulvio Gismondi & Filippo Petroni, 2020. "Insurance Contracts for Hedging Wind Power Uncertainty," Mathematics, MDPI, vol. 8(8), pages 1-16, August.
    6. Guglielmo D’Amico & Giovanni Masala & Filippo Petroni & Robert Adam Sobolewski, 2020. "Managing Wind Power Generation via Indexed Semi-Markov Model and Copula," Energies, MDPI, vol. 13(16), pages 1-21, August.
    7. Mubenga-Tshitaka, Jean-Luc & Muteba Mwamba, John W. & Dikgang, Johane & Gelo, Dambala, 2021. "Risk spillover between climate variables and the agricultural commodity market in East Africa," EconStor Preprints 243160, ZBW - Leibniz Information Centre for Economics.
    8. Anatoliy Swishchuk, 2021. "Modelling of Limit Order Books by General Compound Hawkes Processes with Implementations," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 399-428, March.
    9. Nelson Vadori & Anatoliy Swishchuk, 2019. "Inhomogeneous Random Evolutions: Limit Theorems and Financial Applications," Mathematics, MDPI, vol. 7(5), pages 1-62, May.
    10. Guglielmo D'Amico & Filippo Petroni, 2020. "A micro-to-macro approach to returns, volumes and waiting times," Papers 2007.06262, arXiv.org.
    11. Guglielmo D’Amico & Ada Lika & Filippo Petroni, 2019. "Change point dynamics for financial data: an indexed Markov chain approach," Annals of Finance, Springer, vol. 15(2), pages 247-266, June.
    12. Xiaohong Wang & Shixiang Li & Lizhi Wang & Yaning Sun & Zhongxing Wang, 2020. "Degradation and Dependence Analysis of a Lithium-Ion Battery Pack in the Unbalanced State," Energies, MDPI, vol. 13(22), pages 1-25, November.
    13. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guglielmo D'Amico & Filippo Petroni, 2020. "A micro-to-macro approach to returns, volumes and waiting times," Papers 2007.06262, arXiv.org.
    2. Guglielmo D'Amico & Filippo Petroni, 2013. "Multivariate high-frequency financial data via semi-Markov processes," Papers 1305.0436, arXiv.org.
    3. G. D'Amico & F. Petroni & F. Prattico, 2013. "Semi-Markov Models in High Frequency Finance: A Review," Papers 1312.3894, arXiv.org.
    4. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    5. Álvaro Cartea & Thilo Meyer-Brandis, 2010. "How Duration Between Trades of Underlying Securities Affects Option Prices," Review of Finance, European Finance Association, vol. 14(4), pages 749-785.
    6. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Marked Hawkes process modeling of price dynamics and volatility estimation," Journal of Empirical Finance, Elsevier, vol. 40(C), pages 174-200.
    7. Enrico Scalas & Rudolf Gorenflo & Hugh Luckock & Francesco Mainardi & Maurizio Mantelli & Marco Raberto, 2004. "Anomalous waiting times in high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 695-702.
    8. Berardi, Luca & Serva, Maurizio, 2005. "Time and foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 403-412.
    9. D׳Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2015. "Reliability measures for indexed semi-Markov chains applied to wind energy production," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 170-177.
    10. D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2013. "First and second order semi-Markov chains for wind speed modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1194-1201.
    11. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    12. Adam Clements & Yin Liao, 2014. "The role in index jumps and cojumps in forecasting stock index volatility: Evidence from the Dow Jones index," NCER Working Paper Series 101, National Centre for Econometric Research.
    13. Miccichè, S., 2016. "Understanding the determinants of volatility clustering in terms of stationary Markovian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 186-197.
    14. Tamara Teplova & Mikova Evgeniia & Qaiser Munir & Nataliya Pivnitskaya, 2023. "Black-Litterman model with copula-based views in mean-CVaR portfolio optimization framework with weight constraints," Economic Change and Restructuring, Springer, vol. 56(1), pages 515-535, February.
    15. D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2017. "Insuring wind energy production," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 542-553.
    16. Guglielmo D'Amico & Filippo Petroni, 2017. "A new approach to the modeling of financial volumes," Papers 1709.05823, arXiv.org.
    17. Rewat Khanthaporn, 2022. "Analysis of Nonlinear Comovement of Benchmark Thai Government Bond Yields," PIER Discussion Papers 183, Puey Ungphakorn Institute for Economic Research.
    18. Guglielmo D'Amico & Ada Lika & Filippo Petroni, 2018. "Indexed Markov Chains for financial data: testing for the number of states of the index process," Papers 1802.01540, arXiv.org.
    19. Guglielmo D’Amico & Ada Lika & Filippo Petroni, 2019. "Change point dynamics for financial data: an indexed Markov chain approach," Annals of Finance, Springer, vol. 15(2), pages 247-266, June.
    20. Enrico Scalas, 2006. "Five Years of Continuous-time Random Walks in Econophysics," Lecture Notes in Economics and Mathematical Systems, in: Akira Namatame & Taisei Kaizouji & Yuuji Aruka (ed.), The Complex Networks of Economic Interactions, pages 3-16, Springer.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:267:y:2018:i:2:p:765-777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.