IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v15y2015i8p1293-1314.html
   My bibliography  Save this article

Apparent criticality and calibration issues in the Hawkes self-excited point process model: application to high-frequency financial data

Author

Listed:
  • V. Filimonov
  • D. Sornette

Abstract

We present a careful analysis of possible issues on the application of the self-excited Hawkes process to high-frequency financial data. We analyse a set of effects leading to significant biases in the estimation of the 'criticality index' n that quantifies the degree of endogeneity of how much past events trigger future events. We report the following model biases: (i) evidence of strong upward biases on the estimation of n when using power law memory kernels in the presence of outliers, (ii) strong effects on n resulting from the form of the regularization part of the power law kernel, (iii) strong edge effects on the estimated n when using power law kernels and (iv) the need for an exhaustive search of the absolute maximum of the log-likelihood function due to its complicated shape. Moreover, we demonstrate that the calibration of the Hawkes process on mixtures of pure Poisson process with changes of regime leads to completely spurious apparent critical values for the branching ratio ( ), while the true value is actually . More generally, regime shifts on the parameters of the Hawkes model and/or on the generating process itself are shown to systematically lead to a significant upward bias in the estimation of the branching ratio. We demonstrate the importance of the preparation of the high-frequency financial data, in particular: (a) the impact of overnight trading in the analysis of long-term trends, (b) intraday seasonality and detrending of the data and (c) vulnerability of the analysis to day-to-day non-stationarity and regime shifts. Special care is given to the decrease of quality of the timestamps of tick data due to latency and grouping of messages to packets by the stock exchange. Altogether, our careful exploration of the caveats of the calibration of the Hawkes process stresses the need for considering all the above issues before any conclusion can be sustained. In this respect, because the above effects are plaguing their analyses, the claim by Hardiman et al. [Eur. Phys. J. B - Cond. Matter Comp. Syst., 2013, 86 , 442] that financial market has been continuously functioning at or close to criticality ( ) cannot be supported. In contrast, our previous results on E-mini S&P 500 Futures Contracts and on major commodity future contracts are upheld.

Suggested Citation

  • V. Filimonov & D. Sornette, 2015. "Apparent criticality and calibration issues in the Hawkes self-excited point process model: application to high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1293-1314, August.
  • Handle: RePEc:taf:quantf:v:15:y:2015:i:8:p:1293-1314
    DOI: 10.1080/14697688.2015.1032544
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2015.1032544
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2015.1032544?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    2. Politi, Mauro & Scalas, Enrico, 2008. "Fitting the empirical distribution of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2025-2034.
    3. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    4. Zhuang J. & Ogata Y. & Vere-Jones D., 2002. "Stochastic Declustering of Space-Time Earthquake Occurrences," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 369-380, June.
    5. Vladimir Filimonov & Didier Sornette, 2012. "Quantifying reflexivity in financial markets: towards a prediction of flash crashes," Papers 1201.3572, arXiv.org, revised Apr 2012.
    6. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    7. BAUWENS, Luc & HAUTSCH, Nikolaus, 2006. "Modelling financial high frequency data using point processes," LIDAM Discussion Papers CORE 2006080, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    9. Emmanuel Bacry & Sylvain Delattre & Marc Hoffmann & Jean-François Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Post-Print hal-01313995, HAL.
    10. Plamen Ch. Ivanov & Ainslie Yuen & Boris Podobnik & Youngki Lee, 2004. "Common Scaling Patterns in Intertrade Times of U. S. Stocks," Papers cond-mat/0403662, arXiv.org.
    11. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2008. "Scaling in the distribution of intertrade durations of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5818-5825.
    12. Ioane Muni Toke, 2011. ""Market making" behaviour in an order book model and its impact on the bid-ask spread," Post-Print hal-01705266, HAL.
    13. Filimonov, V. & Sornette, D., 2013. "A stable and robust calibration scheme of the log-periodic power law model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3698-3707.
    14. Large, Jeremy, 2007. "Measuring the resiliency of an electronic limit order book," Journal of Financial Markets, Elsevier, vol. 10(1), pages 1-25, February.
    15. Jesper Møller & Jakob G. Rasmussen, 2006. "Approximate Simulation of Hawkes Processes," Methodology and Computing in Applied Probability, Springer, vol. 8(1), pages 53-64, March.
    16. Vladimir Filimonov & Didier Sornette, 2011. "A Stable and Robust Calibration Scheme of the Log-Periodic Power Law Model," Papers 1108.0099, arXiv.org, revised Jun 2013.
    17. Veen, Alejandro & Schoenberg, Frederic P., 2008. "Estimation of SpaceTime Branching Process Models in Seismology Using an EMType Algorithm," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 614-624, June.
    18. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    19. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    2. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    3. Bruno Gav{s}perov & Zvonko Kostanjv{c}ar, 2022. "Deep Reinforcement Learning for Market Making Under a Hawkes Process-Based Limit Order Book Model," Papers 2207.09951, arXiv.org.
    4. Pierre Blanc & Jonathan Donier & Jean-Philippe Bouchaud, 2015. "Quadratic Hawkes processes for financial prices," Papers 1509.07710, arXiv.org.
    5. Ponta, Linda & Trinh, Mailan & Raberto, Marco & Scalas, Enrico & Cincotti, Silvano, 2019. "Modeling non-stationarities in high-frequency financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 173-196.
    6. Marcello Rambaldi & Vladimir Filimonov & Fabrizio Lillo, 2016. "Detection of intensity bursts using Hawkes processes: an application to high frequency financial data," Papers 1610.05383, arXiv.org.
    7. Kyungsub Lee, 2023. "Multi-kernel property in high-frequency price dynamics under Hawkes model," Papers 2302.11822, arXiv.org.
    8. Wheatley, Spencer & Filimonov, Vladimir & Sornette, Didier, 2016. "The Hawkes process with renewal immigration & its estimation with an EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 120-135.
    9. Marcello Rambaldi & Emmanuel Bacry & Fabrizio Lillo, 2016. "The role of volume in order book dynamics: a multivariate Hawkes process analysis," Papers 1602.07663, arXiv.org.
    10. Antonov, A. & Leonidov, A. & Semenov, A., 2021. "Self-excited Ising game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    11. Carlo Campajola & Domenico Di Gangi & Fabrizio Lillo & Daniele Tantari, 2020. "Modelling time-varying interactions in complex systems: the Score Driven Kinetic Ising Model," Papers 2007.15545, arXiv.org, revised Aug 2021.
    12. Hainaut, Donatien & Goutte, Stephane, 2018. "A switching microstructure model for stock prices," LIDAM Discussion Papers ISBA 2018014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Zeitsch, Peter J., 2019. "A jump model for credit default swaps with hierarchical clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 737-775.
    14. El Euch Omar & Fukasawa Masaaki & Rosenbaum Mathieu, 2016. "The microstructural foundations of leverage effect and rough volatility," Papers 1609.05177, arXiv.org.
    15. Mathieu Rosenbaum & Jianfei Zhang, 2022. "On the universality of the volatility formation process: when machine learning and rough volatility agree," Papers 2206.14114, arXiv.org.
    16. Hai-Chuan Xu & Wei-Xing Zhou, 2020. "Modeling aggressive market order placements with Hawkes factor models," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-12, January.
    17. H Juliette T Unwin & Isobel Routledge & Seth Flaxman & Marian-Andrei Rizoiu & Shengjie Lai & Justin Cohen & Daniel J Weiss & Swapnil Mishra & Samir Bhatt, 2021. "Using Hawkes Processes to model imported and local malaria cases in near-elimination settings," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-18, April.
    18. Bruno Durin & Mathieu Rosenbaum & Gr'egoire Szymanski, 2023. "The two square root laws of market impact and the role of sophisticated market participants," Papers 2311.18283, arXiv.org.
    19. Luca Mucciante & Alessio Sancetta, 2023. "Estimation of an Order Book Dependent Hawkes Process for Large Datasets," Papers 2307.09077, arXiv.org.
    20. Ji, Jingru & Wang, Donghua & Xu, Dinghai & Xu, Chi, 2020. "Combining a self-exciting point process with the truncated generalized Pareto distribution: An extreme risk analysis under price limits," Journal of Empirical Finance, Elsevier, vol. 57(C), pages 52-70.
    21. Paul Jusselin & Mathieu Rosenbaum, 2020. "No‐arbitrage implies power‐law market impact and rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1309-1336, October.
    22. Paul Jusselin & Mathieu Rosenbaum, 2018. "No-arbitrage implies power-law market impact and rough volatility," Papers 1805.07134, arXiv.org.
    23. Bo Jing & Shenghong Li & Yong Ma, 2020. "Pricing VIX options with volatility clustering," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(6), pages 928-944, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Filimonov & Didier Sornette, 2013. "Apparent criticality and calibration issues in the Hawkes self-excited point process model: application to high-frequency financial data," Papers 1308.6756, arXiv.org, revised Jul 2014.
    2. Giacomo Bormetti & Lucio Maria Calcagnile & Michele Treccani & Fulvio Corsi & Stefano Marmi & Fabrizio Lillo, 2015. "Modelling systemic price cojumps with Hawkes factor models," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1137-1156, July.
    3. Maxime Morariu-Patrichi & Mikko Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," CREATES Research Papers 2018-26, Department of Economics and Business Economics, Aarhus University.
    4. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," Papers 1809.08060, arXiv.org, revised Sep 2021.
    5. Anatoliy Swishchuk & Aiden Huffman, 2018. "General Compound Hawkes Processes in Limit Order Books," Papers 1812.02298, arXiv.org.
    6. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    7. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.
    8. Angelos Dassios & Hongbiao Zhao, 2017. "A Generalized Contagion Process With An Application To Credit Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-33, February.
    9. Emmanuel Bacry & Thibault Jaisson & Jean-Francois Muzy, 2014. "Estimation of slowly decreasing Hawkes kernels: Application to high frequency order book modelling," Papers 1412.7096, arXiv.org.
    10. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
    11. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Modeling microstructure price dynamics with symmetric Hawkes and diffusion model using ultra-high-frequency stock data," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 154-183.
    12. Hai-Chuan Xu & Wei-Xing Zhou, 2020. "Modeling aggressive market order placements with Hawkes factor models," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-12, January.
    13. Dassios, Angelos & Zhao, Hongbiao, 2017. "A generalised contagion process with an application to credit risk," LSE Research Online Documents on Economics 68558, London School of Economics and Political Science, LSE Library.
    14. Thibault Jaisson, 2014. "Market impact as anticipation of the order flow imbalance," Papers 1402.1288, arXiv.org.
    15. Lucio Maria Calcagnile & Giacomo Bormetti & Michele Treccani & Stefano Marmi & Fabrizio Lillo, 2015. "Collective synchronization and high frequency systemic instabilities in financial markets," Papers 1505.00704, arXiv.org.
    16. repec:hal:wpaper:hal-00777941 is not listed on IDEAS
    17. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2019. "A generalised CIR process with externally-exciting and self-exciting jumps and its applications in insurance and finance," LSE Research Online Documents on Economics 102043, London School of Economics and Political Science, LSE Library.
    18. Thibault Jaisson, 2015. "Market impact as anticipation of the order flow imbalance," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1123-1135, July.
    19. Anatoliy Swishchuk, 2017. "General Compound Hawkes Processes in Limit Order Books," Papers 1706.07459, arXiv.org, revised Jun 2017.
    20. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
    21. José Da Fonseca & Riadh Zaatour, 2017. "Correlation and Lead–Lag Relationships in a Hawkes Microstructure Model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(3), pages 260-285, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:15:y:2015:i:8:p:1293-1314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.