IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i8p2025-2034.html
   My bibliography  Save this article

Fitting the empirical distribution of intertrade durations

Author

Listed:
  • Politi, Mauro
  • Scalas, Enrico

Abstract

Based on the analysis of a tick-by-tick data set used in the previous work by one of the authors (DJIA stocks traded at NYSE in October 1999), in this paper, we reject the hypothesis that tails of the empirical intertrade distribution are described by a power law. We further argue that the Tsallis q-exponentials are a viable tool for fitting and describing the unconditional distribution of empirical intertrade durations and they compare well to the Weibull distribution.

Suggested Citation

  • Politi, Mauro & Scalas, Enrico, 2008. "Fitting the empirical distribution of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2025-2034.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:8:p:2025-2034
    DOI: 10.1016/j.physa.2007.11.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107012186
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.11.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    2. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    3. Plamen Ch. Ivanov & Ainslie Yuen & Boris Podobnik & Youngki Lee, 2004. "Common Scaling Patterns in Intertrade Times of U. S. Stocks," Papers cond-mat/0403662, arXiv.org.
    4. Z. Eisler & J. Kertész, 2006. "Size matters: some stylized facts of the stock market revisited," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 51(1), pages 145-154, May.
    5. Sazuka, Naoya, 2007. "On the gap between an empirical distribution and an exponential distribution of waiting times for price changes in a financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 500-506.
    6. Lisa Borland, 2002. "Option Pricing Formulas based on a non-Gaussian Stock Price Model," Papers cond-mat/0204331, arXiv.org, revised Sep 2002.
    7. Zoltan Eisler & Janos Kertesz, 2005. "Size matters: some stylized facts of the stock market revisited," Papers physics/0508156, arXiv.org, revised May 2006.
    8. Bertram, William K, 2004. "An empirical investigation of Australian Stock Exchange data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 533-546.
    9. M. Goldstein & S. Morris & G. Yen, 2004. "Problems with fitting to the power-law distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 41(2), pages 255-258, September.
    10. J. de Souza & L. G. Moyano & S. M. Duarte Queirós, 2006. "On statistical properties of traded volume in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 165-168, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.
    2. Ponta, Linda & Trinh, Mailan & Raberto, Marco & Scalas, Enrico & Cincotti, Silvano, 2019. "Modeling non-stationarities in high-frequency financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 173-196.
    3. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    4. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2008. "Scaling in the distribution of intertrade durations of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5818-5825.
    5. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
    6. Plamen Ch Ivanov & Ainslie Yuen & Pandelis Perakakis, 2014. "Impact of Stock Market Structure on Intertrade Time and Price Dynamics," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-14, April.
    7. Bertram, William K., 2008. "Measuring time dependent volatility and cross-sectional correlation in Australian equity returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3183-3191.
    8. Zoltan Eisler & Janos Kertesz & Fabrizio Lillo & Rosario Mantegna, 2009. "Diffusive behavior and the modeling of characteristic times in limit order executions," Quantitative Finance, Taylor & Francis Journals, vol. 9(5), pages 547-563.
    9. Scalas, Enrico, 2007. "Mixtures of compound Poisson processes as models of tick-by-tick financial data," Chaos, Solitons & Fractals, Elsevier, vol. 34(1), pages 33-40.
    10. Bertram, William K., 2009. "Optimal trading strategies for Itô diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2865-2873.
    11. Vladimir Filimonov & Didier Sornette, 2013. "Apparent criticality and calibration issues in the Hawkes self-excited point process model: application to high-frequency financial data," Papers 1308.6756, arXiv.org, revised Jul 2014.
    12. Michelle B Graczyk & Sílvio M Duarte Queirós, 2017. "Intraday seasonalities and nonstationarity of trading volume in financial markets: Collective features," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-23, July.
    13. J. Doyne Farmer & Austin Gerig & Fabrizio Lillo & Henri Waelbroeck, 2013. "How efficiency shapes market impact," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1743-1758, November.
    14. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
    15. Wei-Xing Zhou, 2012. "Universal price impact functions of individual trades in an order-driven market," Quantitative Finance, Taylor & Francis Journals, vol. 12(8), pages 1253-1263, June.
    16. Enrico Scalas & Rudolf Gorenflo & Hugh Luckock & Francesco Mainardi & Maurizio Mantelli & Marco Raberto, 2004. "Anomalous waiting times in high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 695-702.
    17. Niu, Hongli & Wang, Jun, 2017. "Return volatility duration analysis of NYMEX energy futures and spot," Energy, Elsevier, vol. 140(P1), pages 837-849.
    18. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2010. "Complex stock trading network among investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4929-4941.
    19. Scalas, Enrico & Politi, Mauro, 2012. "A parsimonious model for intraday European option pricing," Economics Discussion Papers 2012-14, Kiel Institute for the World Economy (IfW).
    20. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:8:p:2025-2034. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.