IDEAS home Printed from https://ideas.repec.org/p/zbw/esprep/57429.html
   My bibliography  Save this paper

Eine Analyse der Forschungseffizienz deutscher betriebswirtschaftlicher Fachbereiche basierend auf den Daten des Centrums für Hochschulentwicklung (CHE)

Author

Listed:
  • Bielecki, Andre
  • Albers, Sönke

Abstract

Die Erstellung qualitativ hochwertiger Benchmarkings für die Forschung betriebswirtschaftlicher Fachbereiche ist von hoher praktischer Relevanz. Den Studierenden, aber auch dem wissenschaftlichen Personal und der Hochschulpolitik, wird auf diese Weise ermöglicht, die Leistungen von Fachbereichen zu vergleichen und besonders forschungsstarke Standorte zu identifizieren. Den Fachbereichen wird die Möglichkeit geboten, Verbesserungspotenziale zu identifizieren und gegebenenfalls von leistungsstärkeren Fachbereichen zu lernen. Das Centrum für Hochschulentwicklung (CHE) veröffentlicht alle drei Jahre Rankings von Hochschulen zu einzelnen Studienfächern. Hierbei werden verschiedene Leistungsindikatoren, beispielsweise zu der Anzahl und Qualität von Publikationen, den Promotionen und Habilitationen sowie den Forschungsgeldern herangezogen. Basierend auf den Daten des CHE aus dem Jahr 2008 sowie einem kürzlich veröffentlichten neuen CHE-Ranking (2011) wird in dem vorliegenden Aufsatz ein auf die Forschung der individuellen Fachbereiche bezogenes und auf die quantitativen Daten des CHE gestütztes relatives Effizienz-Benchmarking der Fachbereiche erstellt. Im Gegensatz zu einem rein Output-bezogenen Effektivitätsranking analysiert die vorliegende Effizienzanalyse die Leistungsfähigkeit der Fachbereiche bei der Transformation und Gewichtung von Forschungsinput (z.B. Professoren, Forschungsgelder und Promotionen) in Forschungsoutput (Publikationen). Je mehr Forschungsoutput mit dem gegebenen Forschungsinput erzielt wird (und vice versa), desto leistungsfähiger ist der jeweilige Fachbereich und desto höher ist sein Effizienzwert. Ein für eine solche Analyse geeignetes und in dem vorliegenden Aufsatz verwendetes Verfahren ist die Data Envelopment Analysis (DEA). Es zeigt sich, dass zwischen den Effizienzrankings der Fachbereiche keine erheblichen Unterschiede zwischen den Jahren 2008 und 2011 bestehen. Deutliche Unterschiede ergeben sich jedoch bei einem Wechsel der Leistungsindikatoren (Outputfaktoren) von nationalen zu internationalen Publikationen, die mit den Forschungsgeldern, den Promotionen und Habilitationen als Inputfaktoren erzeugt werden. Für einen Großteil der untersuchten Fachbereiche ergibt sich ferner ein erhebliches Potenzial für Steigerungen der Forschungseffizienz. Um diese zu realisieren, werden für jeden ineffizienten Fachbereich operationale individuelle Output-Ziele (Publikationsziele) und effiziente Benchmark-Fachbereiche als Orientierung vorgegeben.

Suggested Citation

  • Bielecki, Andre & Albers, Sönke, 2012. "Eine Analyse der Forschungseffizienz deutscher betriebswirtschaftlicher Fachbereiche basierend auf den Daten des Centrums für Hochschulentwicklung (CHE)," EconStor Preprints 57429, ZBW - Leibniz Information Centre for Economics.
  • Handle: RePEc:zbw:esprep:57429
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/57429/1/Analyse%20der%20Forschungseffizienz%20deutscher%20BWL%20Fachbereiche.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
    2. Sönke Albers, 2009. "Misleading Rankings of Research in Business," German Economic Review, Verein für Socialpolitik, vol. 10(3), pages 352-363, August.
    3. Heinrich W. Ursprung, 2003. "Schneewittchen im Land der Klapperschlangen: Evaluation eines Evaluators," Perspektiven der Wirtschaftspolitik, Verein für Socialpolitik, vol. 4(2), pages 177-190, May.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. SIMAR , Léopold, 1995. "Aspects of Statistical Analysis in DEA-Type Frontier Models," LIDAM Discussion Papers CORE 1995061, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    7. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    8. Sherman, H. David & Gold, Franklin, 1985. "Bank branch operating efficiency : Evaluation with Data Envelopment Analysis," Journal of Banking & Finance, Elsevier, vol. 9(2), pages 297-315, June.
    9. Oral, Muhittin & Yolalan, Reha, 1990. "An empirical study on measuring operating efficiency and profitability of bank branches," European Journal of Operational Research, Elsevier, vol. 46(3), pages 282-294, June.
    10. Aly, Hassan Y, et al, 1990. "Technical, Scale, and Allocative Efficiencies in U.S. Banking: An Empirical Investigation," The Review of Economics and Statistics, MIT Press, vol. 72(2), pages 211-218, May.
    11. Carree, Martin A., 2002. "Technological inefficiency and the skewness of the error component in stochastic frontier analysis," Economics Letters, Elsevier, vol. 77(1), pages 101-107, September.
    12. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    13. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcel Clermont & Alexander Dirksen & Barbara Scheidt & Dirk Tunger, 2017. "Citation metrics as an additional indicator for evaluating research performance? An analysis of their correlations and validity," Business Research, Springer;German Academic Association for Business Research, vol. 10(2), pages 249-279, October.
    2. Marcel Clermont, 2016. "Effectiveness and efficiency of research in Germany over time: an analysis of German business schools between 2001 and 2009," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1347-1381, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    2. Kao, Chiang & Liu, Shiang-Tai, 2009. "Stochastic data envelopment analysis in measuring the efficiency of Taiwan commercial banks," European Journal of Operational Research, Elsevier, vol. 196(1), pages 312-322, July.
    3. Roland Banya & Nicholas Biekpe, 2018. "Banking efficiency and its determinants in selected frontier african markets," Economic Change and Restructuring, Springer, vol. 51(1), pages 69-95, February.
    4. Hsiang-Hsi Liu & Tser-Yieth Chen & Jia-Wen Chen, 2013. "Incorporating the Credit Ranking Measure to Evaluate the Operating Efficiency of Financial Holding Companies in Taiwan," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 3(10), pages 1386-1404, October.
    5. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    6. Carlos Pestana Barros & Gaël Bertrand & Laurent Botti & Scott Tainsky, 2014. "Cost efficiency of French rugby clubs," Applied Economics, Taylor & Francis Journals, vol. 46(23), pages 2721-2732, August.
    7. Latruffe, Laure & Nauges, Celine, 2010. "Converting to organic farming in France: Is there a selection problem?," 120th Seminar, September 2-4, 2010, Chania, Crete 109386, European Association of Agricultural Economists.
    8. Varabyova, Yauheniya & Schreyögg, Jonas, 2013. "International comparisons of the technical efficiency of the hospital sector: Panel data analysis of OECD countries using parametric and non-parametric approaches," Health Policy, Elsevier, vol. 112(1), pages 70-79.
    9. Bauer, Paul W. & Berger, Allen N. & Ferrier, Gary D. & Humphrey, David B., 1998. "Consistency Conditions for Regulatory Analysis of Financial Institutions: A Comparison of Frontier Efficiency Methods," Journal of Economics and Business, Elsevier, vol. 50(2), pages 85-114, March.
    10. Hassan, M. Kabir, 2006. "The X-Efficiency In Islamic Banks," Islamic Economic Studies, The Islamic Research and Training Institute (IRTI), vol. 13, pages 50-78.
    11. Massimo Finocchiaro Castro & Calogero Guccio & Ilde Rizzo, 2014. "An assessment of the waste effects of corruption on infrastructure provision," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 21(4), pages 813-843, August.
    12. Jaffry, Shabbar & Ghulam, Yaseen & Cox, Joe, 2013. "Trends in efficiency in response to regulatory reforms: The case of Indian and Pakistani commercial banks," European Journal of Operational Research, Elsevier, vol. 226(1), pages 122-131.
    13. Lakner, Sebastian & Breustedt, Gunnar, 2015. "Efficiency analysis of organic farming systems- a review of methods, topics, results, and conclusions," 2015 Conference, August 9-14, 2015, Milan, Italy 212025, International Association of Agricultural Economists.
    14. Cuccia, Tiziana & Guccio, Calogero & Rizzo, Ilde, 2016. "The effects of UNESCO World Heritage List inscription on tourism destinations performance in Italian regions," Economic Modelling, Elsevier, vol. 53(C), pages 494-508.
    15. Quaranta, Anna Grazia & Raffoni, Anna & Visani, Franco, 2018. "A multidimensional approach to measuring bank branch efficiency," European Journal of Operational Research, Elsevier, vol. 266(2), pages 746-760.
    16. Davtalab-Olyaie, Mostafa & Asgharian, Masoud & Nia, Vahid Partovi, 2019. "Stochastic ranking and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 214(C), pages 125-138.
    17. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    18. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    19. Michaelides, Panayotis G. & Vouldis, Angelos T. & Tsionas, Efthymios G., 2010. "Globally flexible functional forms: The neural distance function," European Journal of Operational Research, Elsevier, vol. 206(2), pages 456-469, October.
    20. Vaneet Bhatia & Sankarshan Basu & Subrata Kumar Mitra & Pradyumna Dash, 2018. "A review of bank efficiency and productivity," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 557-600, November.

    More about this item

    Keywords

    Centrum für Hochschulentwicklung; Hochschulranking; Effizienzanalyse; Benchmarking; Betriebswirtschaftliche Fachbereiche;
    All these keywords.

    JEL classification:

    • M00 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - General - - - General
    • M10 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:esprep:57429. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.