IDEAS home Printed from
   My bibliography  Save this paper

The impact of the termination rule on cooperation in a prisoner's dilemma experiment


  • Normann, Hans-Theo
  • Wallace, Brian


Cooperation in prisoner's dilemma games can usually be sustained only if the game has an infinite horizon. We analyze to what extent the theoretically crucial distinction of finite vs. infinite-horizon games is reflected in the outcomes of a prisoner's dilemma experiment. We compare three different experimental termination rules in four treatments: a known finite end, an unknown end, and two variants with a random termination rule (with a high and with a low continuation probability, where cooperation can occur in a subgame-perfect equilibrium only with the high probability). We find that the termination rules do not significantly affect average cooperation rates. Specifically, employing a random termination rule does not cause significantly more cooperation compared to a known finite horizon, and the continuation probability does not significantly affect average cooperation rates either. However, the termination rules may influence cooperation over time and end-game behavior. Further, the (expected) length of the game significantly increases cooperation rates. The results suggest that subjects may need at least some learning opportunities (like repetitions of the supergame) before significant backward induction arguments in finitely repeated game have force.

Suggested Citation

  • Normann, Hans-Theo & Wallace, Brian, 2011. "The impact of the termination rule on cooperation in a prisoner's dilemma experiment," DICE Discussion Papers 19, University of Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
  • Handle: RePEc:zbw:dicedp:19

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Ernst Fehr & Klaus M. Schmidt, 1999. "A Theory of Fairness, Competition, and Cooperation," The Quarterly Journal of Economics, Oxford University Press, vol. 114(3), pages 817-868.
    2. Kreps, David M. & Milgrom, Paul & Roberts, John & Wilson, Robert, 1982. "Rational cooperation in the finitely repeated prisoners' dilemma," Journal of Economic Theory, Elsevier, vol. 27(2), pages 245-252, August.
    3. Vera Angelova & Lisa V. Bruttel & Werner Güth & Ulrich Kamecke, 2013. "Can Subgame Perfect Equilibrium Threats Foster Cooperation? An Experimental Test Of Finite-Horizon Folk Theorems," Economic Inquiry, Western Economic Association International, vol. 51(2), pages 1345-1356, April.
    4. Andreoni, James A & Miller, John H, 1993. "Rational Cooperation in the Finitely Repeated Prisoner's Dilemma: Experimental Evidence," Economic Journal, Royal Economic Society, vol. 103(418), pages 570-585, May.
    5. Henrik Orzen, 2008. "Counterintuitive number effects in experimental oligopolies," Experimental Economics, Springer;Economic Science Association, vol. 11(4), pages 390-401, December.
    6. Todd R. Kaplan & Bradley J. Ruffle, 2012. "Which Way to Cooperate," Economic Journal, Royal Economic Society, vol. 122(563), pages 1042-1068, September.
    7. Sigrid Suetens & Jan Potters, 2007. "Bertrand colludes more than Cournot," Experimental Economics, Springer;Economic Science Association, vol. 10(1), pages 71-77, March.
    8. Holt, Charles A, 1985. "An Experimental Test of the Consistent-Conjectures Hypothesis," American Economic Review, American Economic Association, vol. 75(3), pages 314-325, June.
    9. Gonzalez, Luis G. & Guth, Werner & Levati, M. Vittoria, 2005. "When does the game end? Public goods experiments with non-definite and non-commonly known time horizons," Economics Letters, Elsevier, vol. 88(2), pages 221-226, August.
    10. Urs Fischbacher, 2007. "z-Tree: Zurich toolbox for ready-made economic experiments," Experimental Economics, Springer;Economic Science Association, vol. 10(2), pages 171-178, June.
    11. Pedro Dal Bó, 2005. "Cooperation under the Shadow of the Future: Experimental Evidence from Infinitely Repeated Games," American Economic Review, American Economic Association, vol. 95(5), pages 1591-1604, December.
    12. Reinhard Selten & Michael Mitzkewitz & Gerald R. Uhlich, 1997. "Duopoly Strategies Programmed by Experienced Players," Econometrica, Econometric Society, vol. 65(3), pages 517-556, May.
    13. Lisa Bruttel & Werner Güth & Ulrich Kamecke, 2012. "Finitely repeated prisoners’ dilemma experiments without a commonly known end," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(1), pages 23-47, February.
    14. Engle-Warnick, Jim & Slonim, Robert L., 2004. "The evolution of strategies in a repeated trust game," Journal of Economic Behavior & Organization, Elsevier, vol. 55(4), pages 553-573, December.
    15. Lisa Bruttel & Ulrich Kamecke, 2012. "Infinity in the lab. How do people play repeated games?," Theory and Decision, Springer, vol. 72(2), pages 205-219, February.
    16. Stahl, Dale II, 1991. "The graph of Prisoners' Dilemma supergame payoffs as a function of the discount factor," Games and Economic Behavior, Elsevier, vol. 3(3), pages 368-384, August.
    17. Benoit, Jean-Pierre & Krishna, Vijay, 1985. "Finitely Repeated Games," Econometrica, Econometric Society, vol. 53(4), pages 905-922, July.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Prisoner's dilemma; Repeated games; Infinite-horizon games; Experimental economics;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C92 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Group Behavior
    • D21 - Microeconomics - - Production and Organizations - - - Firm Behavior: Theory
    • D43 - Microeconomics - - Market Structure, Pricing, and Design - - - Oligopoly and Other Forms of Market Imperfection

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:dicedp:19. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.