IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

The impact of the termination rule on cooperation in a prisoner’s dilemma experiment

  • Hans-Theo Normann

    ()

  • Brian Wallace

    ()

Cooperation in prisoner's dilemma games can usually be sustained only if the game has an infinite horizon. We analyze to what extent the theoretically crucial distinction of finite vs. infinite-horizon games is reflected in the outcomes of a prisoner's dilemma experiment. We compare three different experimental termination rules in four treatments: a known finite end, an unknown end, and two variants with a random termination rule (with a high and with a low continuation probability, where cooperation can occur in a subgame-perfect equilibrium only with the high probability). We find that the termination rules do not significantly affect average cooperation rates. Specifically, employing a random termination rule does not cause significantly more cooperation compared to a known finite horizon, and the continuation probability does not significantly affect average cooperation rates either. However, the termination rules may influence cooperation over time and end-game behavior. Further, the (expected) length of the game significantly increases cooperation rates. The results suggest that subjects may need at least some learning opportunities (like repetitions of the supergame) before significant backward induction arguments in finitely repeated game have force.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1007/s00182-012-0341-y
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer in its journal International Journal of Game Theory.

Volume (Year): 41 (2012)
Issue (Month): 3 (August)
Pages: 707-718

as
in new window

Handle: RePEc:spr:jogath:v:41:y:2012:i:3:p:707-718
Contact details of provider: Web page: http://link.springer.de/link/service/journals/00182/index.htm

Order Information: Web: http://link.springer.de/orders.htm

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Kreps, David M. & Milgrom, Paul & Roberts, John & Wilson, Robert, 1982. "Rational cooperation in the finitely repeated prisoners' dilemma," Journal of Economic Theory, Elsevier, vol. 27(2), pages 245-252, August.
  2. Holt, Charles A, 1985. "An Experimental Test of the Consistent-Conjectures Hypothesis," American Economic Review, American Economic Association, vol. 75(3), pages 314-25, June.
  3. Gonzalez, Luis G. & Guth, Werner & Levati, M. Vittoria, 2005. "When does the game end? Public goods experiments with non-definite and non-commonly known time horizons," Economics Letters, Elsevier, vol. 88(2), pages 221-226, August.
  4. Fehr, Ernst & Schmidt, Klaus M., 1998. "A Theory of Fairness, Competition and Cooperation," CEPR Discussion Papers 1812, C.E.P.R. Discussion Papers.
  5. Urs Fischbacher, 2007. "z-Tree: Zurich toolbox for ready-made economic experiments," Experimental Economics, Springer, vol. 10(2), pages 171-178, June.
  6. James Andreoni & John H Miller, 1997. "Rational Cooperation in the finitely repeated prisoner's dilemma: experimental evidence," Levine's Working Paper Archive 670, David K. Levine.
  7. Benoit, Jean-Pierre & Krishna, Vijay, 1985. "Finitely Repeated Games," Econometrica, Econometric Society, vol. 53(4), pages 905-22, July.
  8. Pedro Dal B�, 2005. "Cooperation under the Shadow of the Future: Experimental Evidence from Infinitely Repeated Games," American Economic Review, American Economic Association, vol. 95(5), pages 1591-1604, December.
  9. Kaplan, Todd & Ruffle, Bradley, 2007. "Which way to cooperate," MPRA Paper 3381, University Library of Munich, Germany.
  10. Henrik Orzen, 2006. "Counterintuitive Number Effects in Experimental Oligopolies," Discussion Papers 2006-22, The Centre for Decision Research and Experimental Economics, School of Economics, University of Nottingham.
  11. Selten,Reinhard & Mitzkewitz,Michael & Uhlich,Gerald, . "Duopoly strategies programmed by experienced players," Discussion Paper Serie B 106, University of Bonn, Germany.
  12. Lisa Bruttel & Ulrich Kamecke, 2012. "Infinity in the lab. How do people play repeated games?," Theory and Decision, Springer, vol. 72(2), pages 205-219, February.
  13. Sigrid Suetens & Jan Potters, 2007. "Bertrand colludes more than Cournot," Experimental Economics, Springer, vol. 10(1), pages 71-77, March.
  14. Engle-Warnick, Jim & Slonim, Robert L., 2004. "The evolution of strategies in a repeated trust game," Journal of Economic Behavior & Organization, Elsevier, vol. 55(4), pages 553-573, December.
  15. Vera Angelova & Lisa V. Bruttel & Werner Güth & Ulrich Kamecke, 2013. "Can Subgame Perfect Equilibrium Threats Foster Cooperation? An Experimental Test Of Finite-Horizon Folk Theorems," Economic Inquiry, Western Economic Association International, vol. 51(2), pages 1345-1356, 04.
  16. Stahl, Dale II, 1991. "The graph of Prisoners' Dilemma supergame payoffs as a function of the discount factor," Games and Economic Behavior, Elsevier, vol. 3(3), pages 368-384, August.
  17. Lisa Bruttel & Werner Güth & Ulrich Kamecke, 2012. "Finitely repeated prisoners’ dilemma experiments without a commonly known end," International Journal of Game Theory, Springer, vol. 41(1), pages 23-47, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:41:y:2012:i:3:p:707-718. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn)

or (Christopher F Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.