IDEAS home Printed from https://ideas.repec.org/p/zbw/cauewp/200903.html
   My bibliography  Save this paper

A bayesian approach to model-based clustering for panel probit models

Author

Listed:
  • Aßmann, Christian
  • Boysen-Hogrefe, Jens

Abstract

Consideration of latent heterogeneity is of special importance in non linear models for gauging correctly the effect of explaining variables on the dependent variable. This paper adopts the stratified model-based clustering approach for modeling latent heterogeneity for panel probit models. Within a Bayesian framework an estimation algorithm dealing with the inherent label switching problem is provided. Determination of the number of clusters is based on the marginal likelihood and out-of-sample criteria. The ability to decide on the correct number of clusters is assessed within a simulation study indicating high accuracy for both approaches. Different concepts of marginal effects incorporating latent heterogeneity at different degrees arise within the considered model setup and are directly at hand within Bayesian estimation via MCMC methodology. An empirical illustration of the developed methodology indicates that consideration of latent heterogeneity via latent clusters provides the preferred model specification compared to a pooled and a random coefficient specification.

Suggested Citation

  • Aßmann, Christian & Boysen-Hogrefe, Jens, 2009. "A bayesian approach to model-based clustering for panel probit models," Economics Working Papers 2009-03, Christian-Albrechts-University of Kiel, Department of Economics.
  • Handle: RePEc:zbw:cauewp:200903
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/27738/1/598701265.PDF
    Download Restriction: no

    References listed on IDEAS

    as
    1. Ishwaran H. & James L.F. & Sun J., 2001. "Bayesian Model Selection in Finite Mixtures by Marginal Density Decompositions," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1316-1332, December.
    2. Cameron,A. Colin & Trivedi,Pravin K., 2008. "Microeconometrics," Cambridge Books, Cambridge University Press, number 9787111235767, Fall.
    3. Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
    4. Surajit Ray & Bruce G. Lindsay, 2008. "Model selection in high dimensions: a quadratic-risk-based approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 95-118.
    5. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    6. Fraley C. & Raftery A.E., 2002. "Model-Based Clustering, Discriminant Analysis, and Density Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 611-631, June.
    7. Lancaster, Tony, 2000. "The incidental parameter problem since 1948," Journal of Econometrics, Elsevier, vol. 95(2), pages 391-413, April.
    8. Chen, Jiahua & Khalili, Abbas, 2008. "Order Selection in Finite Mixture Models With a Nonsmooth Penalty," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1674-1683.
    9. Heard, Nicholas A. & Holmes, Christopher C. & Stephens, David A., 2006. "A Quantitative Study of Gene Regulation Involved in the Immune Response of Anopheline Mosquitoes: An Application of Bayesian Hierarchical Clustering of Curves," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 18-29, March.
    10. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model-based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354.
    11. Hansen, Bruce E., 2000. "Testing for structural change in conditional models," Journal of Econometrics, Elsevier, vol. 97(1), pages 93-115, July.
    12. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    13. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    14. Dunson, David B. & Herring, Amy H. & Siega-Riz, Anna Maria, 2008. "Bayesian Inference on Changes in Response Densities Over Predictor Clusters," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1508-1517.
    15. Fruhwirth-Schnatter, Sylvia & Kaufmann, Sylvia, 2008. "Model-Based Clustering of Multiple Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 78-89, January.
    16. Bertschek, Irene & Lechner, Michael, 1998. "Convenient estimators for the panel probit model," Journal of Econometrics, Elsevier, vol. 87(2), pages 329-371, September.
    17. Aßmann, Christian, 2007. "Determinants and Costs of Current Account Reversals under Heterogeneity and Serial Correlation," Economics Working Papers 2007-17, Christian-Albrechts-University of Kiel, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Bayesian Estimation; MCMC Methods; Panel Probit Model; Mixture Modelling;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cauewp:200903. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: http://edirc.repec.org/data/vakiede.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.