IDEAS home Printed from https://ideas.repec.org/p/yor/yorken/00-15.html
   My bibliography  Save this paper

Game Theory Via Revealed Preferences

Author

Listed:
  • Indrajit Ray
  • Lin Zhou

Abstract

We investigate equilibrium notions in game theory from the revealed preference approach. For extensive game forms with complete information, we derive a set of independent necessary and sufficient conditions for the observed outcomes to be rationalized by subgame perfect Nash equilibrium.

Suggested Citation

  • Indrajit Ray & Lin Zhou, "undated". "Game Theory Via Revealed Preferences," Discussion Papers 00/15, Department of Economics, University of York.
  • Handle: RePEc:yor:yorken:00/15
    as

    Download full text from publisher

    File URL: https://www.york.ac.uk/media/economics/documents/discussionpapers/2000/0015.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peleg, Bezalel & Tijs, Stef, 1996. "The Consistency Principle for Games in Strategic Forms," International Journal of Game Theory, Springer;Game Theory Society, vol. 25(1), pages 13-34.
    2. Sprumont, Yves, 2000. "On the Testable Implications of Collective Choice Theories," Journal of Economic Theory, Elsevier, vol. 93(2), pages 205-232, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bossert, Walter & Sprumont, Yves, 2003. "Efficient and non-deteriorating choice," Mathematical Social Sciences, Elsevier, vol. 45(2), pages 131-142, April.
    2. Xu, Yongsheng & Zhou, Lin, 2007. "Rationalizability of choice functions by game trees," Journal of Economic Theory, Elsevier, vol. 134(1), pages 548-556, May.
    3. Lee, SangMok, 2012. "The testable implications of zero-sum games," Journal of Mathematical Economics, Elsevier, vol. 48(1), pages 39-46.
    4. Carvajal, Andrés & González, Natalia, 2014. "On refutability of the Nash bargaining solution," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 177-186.
    5. Demuynck, Thomas, 2011. "The computational complexity of rationalizing boundedly rational choice behavior," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 425-433.
    6. Andrés Carvajal & Rahul Deb & James Fenske & John Quah, 2014. "A nonparametric analysis of multi-product oligopolies," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 57(2), pages 253-277, October.
    7. repec:eee:gamebe:v:104:y:2017:i:c:p:563-567 is not listed on IDEAS
    8. Ray, Indrajit & Snyder, Susan, 2013. "Observable implications of Nash and subgame-perfect behavior in extensive games," Journal of Mathematical Economics, Elsevier, vol. 49(6), pages 471-477.
    9. Sun, Ning & Trockel, Walter & Yang, Zaifu, 2011. "Competitive outcomes and endogenous coalition formation in an n-person game," Center for Mathematical Economics Working Papers 358, Center for Mathematical Economics, Bielefeld University.
    10. Walter Bossert & Yves Sprumont, 2013. "Every Choice Function Is Backwards‐Induction Rationalizable," Econometrica, Econometric Society, vol. 81(6), pages 2521-2534, November.
    11. Walter Bossert & Yves Sprumont, 2002. "Core rationalizability in two-agent exchange economies," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 20(4), pages 777-791.
    12. Andrés Carvajal, 2003. "Testable Restrictions of Nash Equilibrium in Games with Continuous Domains," BORRADORES DE ECONOMIA 003555, BANCO DE LA REPÚBLICA.
    13. Ray, Indrajit & Snyder, Susan, 2013. "Observable implications of Nash and subgame-perfect behavior in extensive games," Journal of Mathematical Economics, Elsevier, vol. 49(6), pages 471-477.
    14. Ehlers, Lars & Sprumont, Yves, 2008. "Weakened WARP and top-cycle choice rules," Journal of Mathematical Economics, Elsevier, vol. 44(1), pages 87-94, January.
    15. Trockel, Walter, 2011. "Game theory. The language of social science?," Center for Mathematical Economics Working Papers 357, Center for Mathematical Economics, Bielefeld University.
    16. Carvajal, Andres & Quah, John K.-H., 2009. "A Nonparametric Analysis of the Cournot Model," The Warwick Economics Research Paper Series (TWERPS) 922, University of Warwick, Department of Economics.
    17. Pierre-André Chiappori & Olivier Donni, 2005. "Learning From a Piece of Pie: The Empirical Content of Nash Bargaining," THEMA Working Papers 2006-07, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    18. Carvajal, Andres & Ray, Indrajit & Snyder, Susan, 2004. "Equilibrium behavior in markets and games: testable restrictions and identification," Journal of Mathematical Economics, Elsevier, vol. 40(1-2), pages 1-40, February.
    19. BOSSERT, Walter & SUZUMURA, Kotaro, 2006. "Non-Deteriorating Choice without Full Transitivity," Cahiers de recherche 2006-13, Universite de Montreal, Departement de sciences economiques.
    20. T. Demuynck & L. Lauwers, 2005. "Nash rationalizability of collective choice over lotteries," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/301, Ghent University, Faculty of Economics and Business Administration.
    21. Lee, Byung Soo & Stewart, Colin, 2016. "Identification of payoffs in repeated games," Games and Economic Behavior, Elsevier, vol. 99(C), pages 82-88.
    22. Demuynck, Thomas & Lauwers, Luc, 2009. "Nash rationalization of collective choice over lotteries," Mathematical Social Sciences, Elsevier, vol. 57(1), pages 1-15, January.
    23. Diego Lanzi, 2010. "Embedded choices," Theory and Decision, Springer, vol. 68(3), pages 263-280, March.
    24. Rehbeck, John, 2014. "Every choice correspondence is backwards-induction rationalizable," Games and Economic Behavior, Elsevier, vol. 88(C), pages 207-210.
    25. Stefano Vannucci, 2009. "Choosing VNM-stable sets of the revealed dominance digraph," Department of Economics University of Siena 576, Department of Economics, University of Siena.

    More about this item

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C92 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Group Behavior

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:yor:yorken:00/15. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Paul Hodgson). General contact details of provider: http://edirc.repec.org/data/deyoruk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.