IDEAS home Printed from https://ideas.repec.org/p/bir/birmec/13-15.html

Observable Implications of Nash and Subgame- Perfect Behavior in Extensive Games

Author

Listed:
  • Indrajit Ray
  • Susan Snyder

Abstract

We provide necessary and sufficient conditions for observed outcomes in extensive game forms, in which preferences are unobserved, to be rationalized first, weakly, as a Nash equilibrium and then, fully, as the unique subgame-perfect equilibrium. Thus, one could use these conditions to find that play is (a) consistent with subgame-perfect equilibrium, or (b) not consistent with subgame-perfect behavior but is consistent with Nash equilibrium, or (c) consistent with neither.

Suggested Citation

  • Indrajit Ray & Susan Snyder, 2013. "Observable Implications of Nash and Subgame- Perfect Behavior in Extensive Games," Discussion Papers 13-15, Department of Economics, University of Birmingham.
  • Handle: RePEc:bir:birmec:13-15
    as

    Download full text from publisher

    File URL: https://repec.cal.bham.ac.uk/pdf/13-15.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carvajal, Andrés, 2024. "Recent advances on testability in economic equilibrium models," Journal of Mathematical Economics, Elsevier, vol. 114(C).
    2. Li, Jiangtao & Tang, Rui, 2017. "Every random choice rule is backwards-induction rationalizable," Games and Economic Behavior, Elsevier, vol. 104(C), pages 563-567.
    3. Walter Bossert & Yves Sprumont, 2013. "Every Choice Function Is Backwards‐Induction Rationalizable," Econometrica, Econometric Society, vol. 81(6), pages 2521-2534, November.
    4. Pierre-André Chiappori & Olivier Donni, 2005. "Learning From a Piece of Pie: The Empirical Content of Nash Bargaining," THEMA Working Papers 2006-07, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    5. Freer, Mikhail & Martinelli, César, 2021. "A utility representation theorem for general revealed preference," Mathematical Social Sciences, Elsevier, vol. 111(C), pages 68-76.
    6. Lee, Byung Soo & Stewart, Colin, 2016. "Identification of payoffs in repeated games," Games and Economic Behavior, Elsevier, vol. 99(C), pages 82-88.

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C92 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Group Behavior

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bir:birmec:13-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oleksandr Talavera (email available below). General contact details of provider: https://edirc.repec.org/data/debhauk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.