IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v81y2013i6p2521-2534.html
   My bibliography  Save this article

Every Choice Function Is Backwards‐Induction Rationalizable

Author

Listed:
  • Walter Bossert
  • Yves Sprumont

Abstract

A choice function is backwards-induction rationalizable if there exists a finite perfect-information extensive-form game such that, for each subset of alternatives, the backwards-induction outcome of the restriction of the game to that subset of alternatives coincides with the choice from that subset. We prove that every choice function is backwards-induction rationalizable.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Walter Bossert & Yves Sprumont, 2013. "Every Choice Function Is Backwards‐Induction Rationalizable," Econometrica, Econometric Society, vol. 81(6), pages 2521-2534, November.
  • Handle: RePEc:ecm:emetrp:v:81:y:2013:i:6:p:2521-2534
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.3982/
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mantel, Rolf R., 1974. "On the characterization of aggregate excess demand," Journal of Economic Theory, Elsevier, vol. 7(3), pages 348-353, March.
    2. Ray, Indrajit & Zhou, Lin, 2001. "Game Theory via Revealed Preferences," Games and Economic Behavior, Elsevier, vol. 37(2), pages 415-424, November.
    3. Ray, Indrajit & Snyder, Susan, 2013. "Observable implications of Nash and subgame-perfect behavior in extensive games," Journal of Mathematical Economics, Elsevier, vol. 49(6), pages 471-477.
    4. Xu, Yongsheng & Zhou, Lin, 2007. "Rationalizability of choice functions by game trees," Journal of Economic Theory, Elsevier, vol. 134(1), pages 548-556, May.
    5. Lee, SangMok, 2012. "The testable implications of zero-sum games," Journal of Mathematical Economics, Elsevier, vol. 48(1), pages 39-46.
    6. Sonnenschein, Hugo, 1973. "Do Walras' identity and continuity characterize the class of community excess demand functions?," Journal of Economic Theory, Elsevier, vol. 6(4), pages 345-354, August.
    7. Adam Galambos, 2005. "Revealed Preference in Game Theory," 2005 Meeting Papers 776, Society for Economic Dynamics.
    8. Ray, Indrajit & Snyder, Susan, 2013. "Observable implications of Nash and subgame-perfect behavior in extensive games," Journal of Mathematical Economics, Elsevier, vol. 49(6), pages 471-477.
    9. Sprumont, Yves, 2000. "On the Testable Implications of Collective Choice Theories," Journal of Economic Theory, Elsevier, vol. 93(2), pages 205-232, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:gamebe:v:104:y:2017:i:c:p:563-567 is not listed on IDEAS
    2. García-Sanz, María D. & Alcantud, José Carlos R., 2015. "Sequential rationalization of multivalued choice," Mathematical Social Sciences, Elsevier, vol. 74(C), pages 29-33.
    3. Ray, Indrajit & Snyder, Susan, 2013. "Observable implications of Nash and subgame-perfect behavior in extensive games," Journal of Mathematical Economics, Elsevier, vol. 49(6), pages 471-477.
    4. Lee, Byung Soo & Stewart, Colin, 2016. "Identification of payoffs in repeated games," Games and Economic Behavior, Elsevier, vol. 99(C), pages 82-88.
    5. Rehbeck, John, 2014. "Every choice correspondence is backwards-induction rationalizable," Games and Economic Behavior, Elsevier, vol. 88(C), pages 207-210.

    More about this item

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D70 - Microeconomics - - Analysis of Collective Decision-Making - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:81:y:2013:i:6:p:2521-2534. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.