IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

A Solution to Matching with Preferences over Colleagues

  • Federico Echenique

    (California Institute of Technology)

We study many-to-one matchings, such as the assignment of students to colleges, where the students have preferences over the other students who would attend the same college. It is well known that the core of this model may be empty, without strong assumptions on agents' preferences. We introduce a method that finds all core matchings, if any exist. The method requires no assumptions on preferences. Our method also finds certain partial solutions that may be useful when the core is empty.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by EconWPA in its series Game Theory and Information with number 0506005.

in new window

Length: 28 pages
Date of creation: 20 Jun 2005
Date of revision:
Handle: RePEc:wpa:wuwpga:0506005
Note: Type of Document - pdf; pages: 28
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Tayfun Sönmez & Suryapratim Banerjee & Hideo Konishi, 2001. "Core in a simple coalition formation game," Social Choice and Welfare, Springer, vol. 18(1), pages 135-153.
  2. Echenique, Federico & Oviedo, Jorge, 2004. "Core many-to-one matchings by fixed-point methods," Journal of Economic Theory, Elsevier, vol. 115(2), pages 358-376, April.
  3. Echenique, Federico & Oviedo, Jorge, 2006. "A theory of stability in many-to-many matching markets," Theoretical Economics, Econometric Society, vol. 1(2), pages 233-273, June.
  4. Martinez, Ruth & Masso, Jordi & Neme, Alejandro & Oviedo, Jorge, 2004. "An algorithm to compute the full set of many-to-many stable matchings," Mathematical Social Sciences, Elsevier, vol. 47(2), pages 187-210, March.
  5. Klaus, Bettina & Klijn, Flip, 2005. "Stable matchings and preferences of couples," Journal of Economic Theory, Elsevier, vol. 121(1), pages 75-106, March.
  6. Roth, Alvin E, 1984. "The Evolution of the Labor Market for Medical Interns and Residents: A Case Study in Game Theory," Journal of Political Economy, University of Chicago Press, vol. 92(6), pages 991-1016, December.
  7. Pablo Revilla, 2004. "Many-to-one Matching When Colleagues Matter," Economic Working Papers at Centro de Estudios Andaluces E2004/85, Centro de Estudios Andaluces.
  8. Federico Echenique, 2004. "Counting Combinatorial Choice Rules," Game Theory and Information 0404004, EconWPA.
  9. Bogomolnaia, Anna & Jackson, Matthew O., 2002. "The Stability of Hedonic Coalition Structures," Games and Economic Behavior, Elsevier, vol. 38(2), pages 201-230, February.
  10. Michael Ostrovsky, 2008. "Stability in Supply Chain Networks," American Economic Review, American Economic Association, vol. 98(3), pages 897-923, June.
  11. Dutta, B. & Masso, J., 1996. "Stability of Matchings when Individuals Have Preferences Over Colleagues," UFAE and IAE Working Papers 325.96, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
  12. Adachi, Hiroyuki, 2000. "On a characterization of stable matchings," Economics Letters, Elsevier, vol. 68(1), pages 43-49, July.
  13. Klaus Bettina & Klijn Flip & Nakamura Toshifumi, 2007. "Corrigendum: Stable Matchings and Preferences of Couples," Research Memorandum 025, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  14. Von Stengel, Bernhard, 2002. "Computing equilibria for two-person games," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 45, pages 1723-1759 Elsevier.
  15. Kelso, Alexander S, Jr & Crawford, Vincent P, 1982. "Job Matching, Coalition Formation, and Gross Substitutes," Econometrica, Econometric Society, vol. 50(6), pages 1483-1504, November.
  16. McKelvey, Richard D. & McLennan, Andrew, 1996. "Computation of equilibria in finite games," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 2, pages 87-142 Elsevier.
  17. Greenberg, Joseph, 1994. "Coalition structures," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 2, chapter 37, pages 1305-1337 Elsevier.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpga:0506005. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.