IDEAS home Printed from https://ideas.repec.org/p/aoz/wpaper/18.html

Lattice structure of the random stable set in many-to-many matching markets

Author

Listed:
  • Noelia Juárez

    (Universidad Nacional de San Luis/CONICET)

  • Pablo Neme

    (Universidad Nacional de San Luis/CONICET)

  • Jorge Oviedo

    (Universidad Nacional de San Luis/CONICET)

Abstract

We study the lattice structure of the set of random stable matchings for a many- to-many matching market. We define a partial order on the random stable set and present two natural binary operations for computing the least upper bound and the greatest lower bound for each side of the matching market. Then we prove that with these binary operations the set of random stable matchings forms two distributive lattices for the appropriate partial order, one for each side of the mar- ket. Moreover, these lattices are dual.

Suggested Citation

  • Noelia Juárez & Pablo Neme & Jorge Oviedo, 2020. "Lattice structure of the random stable set in many-to-many matching markets," Working Papers 18, Red Nacional de Investigadores en Economía (RedNIE).
  • Handle: RePEc:aoz:wpaper:18
    as

    Download full text from publisher

    File URL: https://drive.google.com/file/d/13zBwcuUu7vKx5wFKdGpQ3NEGpzIXWJ3Y/view
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuanyang Ruan & Sinong Lin, 2025. "Fermatean Fuzzy Two-Sided Matching Model Considering Regret Aversion and Matching Willingness," Mathematics, MDPI, vol. 13(20), pages 1-29, October.
    2. Haris Aziz & Florian Brandl, 2020. "The Vigilant Eating Rule: A General Approach for Probabilistic Economic Design with Constraints," Papers 2008.08991, arXiv.org, revised Jul 2021.
    3. Aziz, Haris & Brandl, Florian, 2022. "The vigilant eating rule: A general approach for probabilistic economic design with constraints," Games and Economic Behavior, Elsevier, vol. 135(C), pages 168-187.

    More about this item

    Keywords

    ;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory
    • D49 - Microeconomics - - Market Structure, Pricing, and Design - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aoz:wpaper:18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Laura Inés D Amato (email available below). General contact details of provider: https://edirc.repec.org/data/redniar.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.