IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpga/0302001.html
   My bibliography  Save this paper

Core Many-to-one Matchings by Fixed-point Methods

Author

Listed:
  • Federico Echenique

    (Caltech)

  • Jorge Oviedo

    (Universidad de San Luis)

Abstract

We characterize the core many-to-one matchings as fixed points of a map. Our characterization gives an algorithm for finding core allocations; the algorithm is efficient and simple to implement. Our characterization does not require substitutable preferences, so it is separate from the structure needed for the non-emptiness of the core. When preferences are substitutable, our characterization gives a simple proof of the lattice structure of core matchings, and it gives a method for computing the join and meet of two core matchings.

Suggested Citation

  • Federico Echenique & Jorge Oviedo, 2003. "Core Many-to-one Matchings by Fixed-point Methods," Game Theory and Information 0302001, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpga:0302001
    Note: Type of Document - PDF; prepared on Linux PC; to print on PostScript; pages: 30
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/game/papers/0302/0302001.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roth, Alvin E. & Sotomayor, Marilda, 1988. "Interior points in the core of two-sided matching markets," Journal of Economic Theory, Elsevier, vol. 45(1), pages 85-101, June.
    2. Ahmet Alkan, 2002. "A class of multipartner matching markets with a strong lattice structure," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 19(4), pages 737-746.
    3. Adachi, Hiroyuki, 2000. "On a characterization of stable matchings," Economics Letters, Elsevier, vol. 68(1), pages 43-49, July.
    4. Roth, Alvin E. & Sotomayor, Marilda, 1992. "Two-sided matching," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 1, chapter 16, pages 485-541, Elsevier.
    5. Sotomayor, Marilda, 1999. "Three remarks on the many-to-many stable matching problem," Mathematical Social Sciences, Elsevier, vol. 38(1), pages 55-70, July.
    6. Kelso, Alexander S, Jr & Crawford, Vincent P, 1982. "Job Matching, Coalition Formation, and Gross Substitutes," Econometrica, Econometric Society, vol. 50(6), pages 1483-1504, November.
    7. Martinez, Ruth & Masso, Jordi & Neme, Alejandro & Oviedo, Jorge, 2000. "Single Agents and the Set of Many-to-One Stable Matchings," Journal of Economic Theory, Elsevier, vol. 91(1), pages 91-105, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Echenique, Federico & Oviedo, Jorge, 2006. "A theory of stability in many-to-many matching markets," Theoretical Economics, Econometric Society, vol. 1(2), pages 233-273, June.
    2. Hatfield, John William & Kojima, Fuhito, 2010. "Substitutes and stability for matching with contracts," Journal of Economic Theory, Elsevier, vol. 145(5), pages 1704-1723, September.
    3. Alvin Roth, 2008. "Deferred acceptance algorithms: history, theory, practice, and open questions," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(3), pages 537-569, March.
    4. Konishi, Hideo & Unver, M. Utku, 2006. "Credible group stability in many-to-many matching problems," Journal of Economic Theory, Elsevier, vol. 129(1), pages 57-80, July.
    5. John William Hatfield & Paul R. Milgrom, 2005. "Matching with Contracts," American Economic Review, American Economic Association, vol. 95(4), pages 913-935, September.
    6. Klijn, Flip & Yazıcı, Ayşe, 2014. "A many-to-many ‘rural hospital theorem’," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 63-73.
    7. Ayşe Yazıcı, 2017. "Probabilistic stable rules and Nash equilibrium in two-sided matching problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(1), pages 103-124, March.
    8. Paula Jaramillo & Çaǧatay Kayı & Flip Klijn, 2014. "On the exhaustiveness of truncation and dropping strategies in many-to-many matching markets," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(4), pages 793-811, April.
    9. Assaf Romm, 2014. "Implications of capacity reduction and entry in many-to-one stable matching," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 43(4), pages 851-875, December.
    10. Kazuo Murota, 2016. "Discrete convex analysis: A tool for economics and game theory," The Journal of Mechanism and Institution Design, Society for the Promotion of Mechanism and Institution Design, University of York, vol. 1(1), pages 151-273, December.
    11. Tayfun Sönmez & Tobias B. Switzer, 2013. "Matching With (Branch‐of‐Choice) Contracts at the United States Military Academy," Econometrica, Econometric Society, vol. 81(2), pages 451-488, March.
    12. Wu, Qingyun & Roth, Alvin E., 2018. "The lattice of envy-free matchings," Games and Economic Behavior, Elsevier, vol. 109(C), pages 201-211.
    13. Echenique, Federico & Yenmez, M. Bumin, 2007. "A solution to matching with preferences over colleagues," Games and Economic Behavior, Elsevier, vol. 59(1), pages 46-71, April.
    14. Hideo Konishi & M. Utku Ünver, 2003. "Credible Group Stability in Multi-Partner Matching Problems," Working Papers 2003.115, Fondazione Eni Enrico Mattei.
    15. Klaus, Bettina & Walzl, Markus, 2009. "Stable many-to-many matchings with contracts," Journal of Mathematical Economics, Elsevier, vol. 45(7-8), pages 422-434, July.
    16. John W. Hatfield & Paul Milgrom, 2005. "Auctions, Matching and the Law of Aggregate Demand," Levine's Bibliography 122247000000000780, UCLA Department of Economics.
    17. Adachi, Hiroyuki, 2017. "Stable matchings and fixed points in trading networks: A note," Economics Letters, Elsevier, vol. 156(C), pages 65-67.
    18. Tam'as Fleiner & Zsuzsanna Jank'o & Akihisa Tamura & Alexander Teytelboym, 2015. "Trading Networks with Bilateral Contracts," Papers 1510.01210, arXiv.org, revised May 2018.
    19. Bando, Keisuke, 2014. "A modified deferred acceptance algorithm for many-to-one matching markets with externalities among firms," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 173-181.
    20. Jiao, Zhenhua & Tian, Guoqiang, 2017. "The Blocking Lemma and strategy-proofness in many-to-many matchings," Games and Economic Behavior, Elsevier, vol. 102(C), pages 44-55.

    More about this item

    Keywords

    matching; supermodular games; tarski's fixed-point theorem;
    All these keywords.

    JEL classification:

    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpga:0302001. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.