IDEAS home Printed from https://ideas.repec.org/p/usi/wpaper/537.html
   My bibliography  Save this paper

A Theoretical Model for the Extraction and Refinement of Natural Resources

Author

Listed:
  • Antonio Roma
  • Davide Pirino

Abstract

The modelling of production in microeconomics has been the subject of heated debate. The controversial issues include the substitutability between production inputs, the role of time and the economic consequences of irreversibility in the production process. A case in point is the use of Cobb-Douglas type production functions. This approach completely ignores the physical process underlying the production of a good. We examine these issues in the context of the production of a basic commodity (such as copper or aluminium). We model the extraction and the refinement of a valuable substance which is mixed with waste material, in a way which is fully consistent with the physical constraints of the process. The resulting analytical description of production unambiguously reveals that perfect substitutability between production inputs fails if a corrected thermodynamic approach is used. We analyze the equilibrium pricing of a commodity extracted in an irreversible way. The thermodynamic model allows for the calculation of the ”energy yield” (energy return on energy invested) of production alongside a financial (real) return in a two-period investment decision. The two investment criteria correspond in our economy to a different choice of numeraire and means of payment and corresponding views of the value of energy resources. Under an energy numeraire, energy resources will naturally be used in a more parsimonious way

Suggested Citation

  • Antonio Roma & Davide Pirino, 2008. "A Theoretical Model for the Extraction and Refinement of Natural Resources," Department of Economics University of Siena 537, Department of Economics, University of Siena.
  • Handle: RePEc:usi:wpaper:537
    as

    Download full text from publisher

    File URL: http://repec.deps.unisi.it/quaderni/537.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kummel, Reiner, 1989. "Energy as a factor of production and entropy as a pollution indicator in macroeconomic modelling," Ecological Economics, Elsevier, vol. 1(2), pages 161-180, May.
    2. Khalil, Elias L., 1990. "Entropy law and exhaustion of natural resources Is Nicholas Georgescu-Roegen's paradigm defensible?," Ecological Economics, Elsevier, vol. 2(2), pages 163-178, June.
    3. Kaldellis, J. K. & Vlachou, D. S. & Korbakis, G., 2005. "Techno-economic evaluation of small hydro power plants in Greece: a complete sensitivity analysis," Energy Policy, Elsevier, vol. 33(15), pages 1969-1985, October.
    4. Gonzalo Cortazar & Eduardo S. Schwartz & Marcelo Salinas, 1998. "Evaluating Environmental Investments: A Real Options Approach," Management Science, INFORMS, vol. 44(8), pages 1059-1070, August.
    5. Bodo, Giorgio & Signorini, Luigi Federico, 1987. "Short-term forecasting of the industrial production index," International Journal of Forecasting, Elsevier, vol. 3(2), pages 245-259.
    6. Robert M. Solow, 1974. "The Economics of Resources or the Resources of Economics," Palgrave Macmillan Books, in: Chennat Gopalakrishnan (ed.), Classic Papers in Natural Resource Economics, chapter 12, pages 257-276, Palgrave Macmillan.
    7. Krysiak, Frank C. & Krysiak, Daniela, 2003. "Production, consumption, and general equilibrium with physical constraints," Journal of Environmental Economics and Management, Elsevier, vol. 46(3), pages 513-538, November.
    8. Hartwick, John M, 1978. "Exploitation of Many Deposits of an Exhaustible Resource," Econometrica, Econometric Society, vol. 46(1), pages 201-217, January.
    9. Ruth, Matthias, 1995. "Thermodynamic constraints on optimal depletion of copper and aluminum in the United States: a dynamic model of substitution and technical change," Ecological Economics, Elsevier, vol. 15(3), pages 197-213, December.
    10. Patrick J. Kehoe & Andrew Atkeson, 1999. "Models of Energy Use: Putty-Putty versus Putty-Clay," American Economic Review, American Economic Association, vol. 89(4), pages 1028-1043, September.
    11. Griffin, James M & Gregory, Paul R, 1976. "An Intercountry Translog Model of Energy Substitution Responses," American Economic Review, American Economic Association, vol. 66(5), pages 845-857, December.
    12. Ethridge, Don, 1973. "The Inclusion of Wastes in the Theory of the Firm," Journal of Political Economy, University of Chicago Press, vol. 81(6), pages 1430-1441, Nov.-Dec..
    13. Ayres, Robert U & Kneese, Allen V, 1969. "Production , Consumption, and Externalities," American Economic Review, American Economic Association, vol. 59(3), pages 282-297, June.
    14. Thompson, Peter & Taylor, Timothy G, 1995. "The Capital-Energy Substitutability Debate: A New Look," The Review of Economics and Statistics, MIT Press, vol. 77(3), pages 565-569, August.
    15. Islam, Saiful, 1985. "Effect of an essential input on isoquants and substitution elasticities," Energy Economics, Elsevier, vol. 7(3), pages 194-196, July.
    16. Sav, G Thomas, 1984. "Micro Engineering Foundations of Energy-Capital Complementarity: Solar Domestic Water Heaters," The Review of Economics and Statistics, MIT Press, vol. 66(2), pages 334-338, May.
    17. Lozada, Gabriel A., 1991. "A defense of Nicholas Georgescu-Roegen's paradigm," Ecological Economics, Elsevier, vol. 3(2), pages 157-160, July.
    18. Daly, Herman E., 1992. "Is the entropy law relevant to the economics of natural resource scarcity?-- yes, of course it is!," Journal of Environmental Economics and Management, Elsevier, vol. 23(1), pages 91-95, July.
    19. Roma, Antonio, 2006. "Energy, money, and pollution," Ecological Economics, Elsevier, vol. 56(4), pages 534-545, April.
    20. Cleveland, Cutler J. & Ruth, Matthias, 1997. "When, where, and by how much do biophysical limits constrain the economic process?: A survey of Nicholas Georgescu-Roegen's contribution to ecological economics," Ecological Economics, Elsevier, vol. 22(3), pages 203-223, September.
    21. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-384, March.
    22. Solow, Robert M., 1997. "Georgescu-Roegen versus Solow-Stiglitz," Ecological Economics, Elsevier, vol. 22(3), pages 267-268, September.
    23. Magnus, Jan R, 1979. "Substitution between Energy and Non-Energy Inputs in the Netherlands, 1950-1976," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 20(2), pages 465-484, June.
    24. Berndt, Ernst R & Wood, David O, 1975. "Technology, Prices, and the Derived Demand for Energy," The Review of Economics and Statistics, MIT Press, vol. 57(3), pages 259-268, August.
    25. Khalil, Elias L., 1991. "Entropy law and Nicholas Georgescu-Roegen's paradigm: A reply," Ecological Economics, Elsevier, vol. 3(2), pages 161-163, July.
    26. Stiglitz, Joseph E, 1976. "Monopoly and the Rate of Extraction of Exhaustible Resources," American Economic Review, American Economic Association, vol. 66(4), pages 655-661, September.
    27. Abel, Andrew B, 1983. "Energy Price Uncertainty and Optimal Factor Intensity: A Mean-Variance Analysis," Econometrica, Econometric Society, vol. 51(6), pages 1839-1845, November.
    28. Pindyck, Robert S, 1979. "Interfuel Substitution and the Industrial Demand for Energy: An International Comparison," The Review of Economics and Statistics, MIT Press, vol. 61(2), pages 169-179, May.
    29. Brennan, Michael J & Schwartz, Eduardo S, 1985. "Evaluating Natural Resource Investments," The Journal of Business, University of Chicago Press, vol. 58(2), pages 135-157, April.
    30. Daly, Herman E., 1997. "Georgescu-Roegen versus Solow/Stiglitz," Ecological Economics, Elsevier, vol. 22(3), pages 261-266, September.
    31. Ayres, Robert U. & Miller, Steven M., 1980. "The role of technological change," Journal of Environmental Economics and Management, Elsevier, vol. 7(4), pages 353-371, December.
    32. Cleveland, Cutler J., 2005. "Net energy from the extraction of oil and gas in the United States," Energy, Elsevier, vol. 30(5), pages 769-782.
    33. Krysiak, Frank C., 2006. "Entropy, limits to growth, and the prospects for weak sustainability," Ecological Economics, Elsevier, vol. 58(1), pages 182-191, June.
    34. Pindyck, Robert S & Rotemberg, Julio J, 1983. "Dynamic Factor Demands and the Effects of Energy Price Shocks," American Economic Review, American Economic Association, vol. 73(5), pages 1066-1079, December.
    35. Kim, In-Moo & Loungani, Prakash, 1992. "The role of energy in real business cycle models," Journal of Monetary Economics, Elsevier, vol. 29(2), pages 173-189, April.
    36. Tsoutsos, Theocharis & Gekas, Vasilis & Marketaki, Katerina, 2003. "Technical and economical evaluation of solar thermal power generation," Renewable Energy, Elsevier, vol. 28(6), pages 873-886.
    37. Gately, Mark, 2007. "The EROI of U.S. offshore energy extraction: A net energy analysis of the Gulf of Mexico," Ecological Economics, Elsevier, vol. 63(2-3), pages 355-364, August.
    38. Fuss, Melvyn A., 1977. "The demand for energy in Canadian manufacturing : An example of the estimation of production structures with many inputs," Journal of Econometrics, Elsevier, vol. 5(1), pages 89-116, January.
    39. Cleveland, Cutler J., 1992. "Energy quality and energy surplus in the extraction of fossil fuels in the U.S," Ecological Economics, Elsevier, vol. 6(2), pages 139-162, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roma, Antonio & Pirino, Davide, 2009. "The extraction of natural resources: The role of thermodynamic efficiency," Ecological Economics, Elsevier, vol. 68(10), pages 2594-2606, August.
    2. Cleveland, Cutler J. & Ruth, Matthias, 1997. "When, where, and by how much do biophysical limits constrain the economic process?: A survey of Nicholas Georgescu-Roegen's contribution to ecological economics," Ecological Economics, Elsevier, vol. 22(3), pages 203-223, September.
    3. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    4. Fagnart, Jean-François & Germain, Marc, 2011. "Quantitative versus qualitative growth with recyclable resource," Ecological Economics, Elsevier, vol. 70(5), pages 929-941, March.
    5. Claudia S. Gómez-López & Luis A. Puch, 2008. "Uso de Energía en Economías Exportadoras de Petróleo," Economic Reports 24-08, FEDEA.
    6. Antonia Diaz & Luis A. Puch & Maria D. Guillo, 2004. "Costly Capital Reallocation and Energy Use," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 7(2), pages 494-518, April.
    7. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
    8. Dong Hee Suh, 2015. "Declining Energy Intensity in the U.S. Agricultural Sector: Implications for Factor Substitution and Technological Change," Sustainability, MDPI, vol. 7(10), pages 1-14, September.
    9. Krysiak, Frank C., 2006. "Entropy, limits to growth, and the prospects for weak sustainability," Ecological Economics, Elsevier, vol. 58(1), pages 182-191, June.
    10. Khalid, Waqar & Özdeşer, Hüseyin & Jalil, Abdul, 2021. "An empirical analysis of inter-factor and inter-fuel substitution in the energy sector of Pakistan," Renewable Energy, Elsevier, vol. 177(C), pages 953-966.
    11. Sollner, Fritz, 1997. "A reexamination of the role of thermodynamics for environmental economics," Ecological Economics, Elsevier, vol. 22(3), pages 175-201, September.
    12. Manish Gupta & Ramprasad Sengupta, 2013. "Energy Savings Potential and Policy for Energy Conservation in Selected Indian Manufacturing Industries," Review of Market Integration, India Development Foundation, vol. 5(3), pages 363-388, December.
    13. Haller, Stefanie A. & Hyland, Marie, 2014. "Capital–energy substitution: Evidence from a panel of Irish manufacturing firms," Energy Economics, Elsevier, vol. 45(C), pages 501-510.
    14. Puch, Luis A., 2013. "A theory of vintage capital investment and energy use," UC3M Working papers. Economics we1320, Universidad Carlos III de Madrid. Departamento de Economía.
    15. Comolli, Paul, 2006. "Sustainability and growth when manufactured capital and natural capital are not substitutable," Ecological Economics, Elsevier, vol. 60(1), pages 157-167, November.
    16. Dargay, Joyce M., 1980. "The Demand for Energy in Swedish Manufacturing," Working Paper Series 33, Research Institute of Industrial Economics, revised Aug 1982.
    17. Papageorgiou, Chris & Saam, Marianne & Schulte, Patrick, 2013. "Elasticity of substitution between clean and dirty energy inputs: A macroeconomic perspective," ZEW Discussion Papers 13-087, ZEW - Leibniz Centre for European Economic Research.
    18. Bello, Mufutau Opeyemi & Solarin, Sakiru Adebola & Yen, Yuen Yee, 2018. "Hydropower and potential for interfuel substitution: The case of electricity sector in Malaysia," Energy, Elsevier, vol. 151(C), pages 966-983.
    19. Steinbuks, Jevgenijs & Neuhoff, Karsten, 2014. "Assessing energy price induced improvements in efficiency of capital in OECD manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 68(2), pages 340-356.
    20. Kolstad, Charles D., 2000. "Energy and Depletable Resources: Economics and Policy, 1973-1998," Journal of Environmental Economics and Management, Elsevier, vol. 39(3), pages 282-305, May.

    More about this item

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • E42 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Monetary Sytsems; Standards; Regimes; Government and the Monetary System
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:usi:wpaper:537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Fabrizio Becatti (email available below). General contact details of provider: https://edirc.repec.org/data/desieit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.