IDEAS home Printed from https://ideas.repec.org/p/tkk/dpaper/dp71.html
   My bibliography  Save this paper

Distribution of pure Nash equilibria in n-person games with random best replies

Author

Listed:
  • Klaus Kultti
  • Hannu Salonen
  • Hannu Vartiainen

    ()

Abstract

In this paper we study the number of pure strategy Nash equilibria in large finite n-player games. A distinguishing feature of our study is that we allow general - potentially multivalued - best reply correspondences. Given the number K of pure strategies to each player, we assign to each player a distribution over the number of his pure best replies against each strategy profile of his opponents. If the means of these distributions have a limit (mu)i for each player i as the number K of pure strategies goes to infinity, then the limit number of pure equilibria is Poisson distributed with a mean equal to the product of the limit means (mu)i. In the special case when all best reply mappings are equally likely, the probability of at least one pure Nash equilibrium approaches one and the expected number of pure Nash equilibria goes to infinity.

Suggested Citation

  • Klaus Kultti & Hannu Salonen & Hannu Vartiainen, 2011. "Distribution of pure Nash equilibria in n-person games with random best replies," Discussion Papers 71, Aboa Centre for Economics.
  • Handle: RePEc:tkk:dpaper:dp71
    as

    Download full text from publisher

    File URL: http://www.ace-economics.fi/kuvat/dp71.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Bade, Sophie & Haeringer, Guillaume & Renou, Ludovic, 2007. "More strategies, more Nash equilibria," Journal of Economic Theory, Elsevier, vol. 135(1), pages 551-557, July.
    2. Stanford, William, 1997. "On the distribution of pure strategy equilibria in finite games with vector payoffs," Mathematical Social Sciences, Elsevier, vol. 33(2), pages 115-127, April.
    3. Powers, Imelda Yeung, 1990. "Limiting Distributions of the Number of Pure Strategy Nash Equilibria in N-Person Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(3), pages 277-286.
    4. McLennan, Andrew & Berg, Johannes, 2005. "Asymptotic expected number of Nash equilibria of two-player normal form games," Games and Economic Behavior, Elsevier, vol. 51(2), pages 264-295, May.
    5. Andrew McLennan, 2005. "The Expected Number of Nash Equilibria of a Normal Form Game," Econometrica, Econometric Society, vol. 73(1), pages 141-174, January.
    6. William Stanford, 1996. "The Limit Distribution of Pure Strategy Nash Equilibria in Symmetric Bimatrix Games," Mathematics of Operations Research, INFORMS, vol. 21(3), pages 726-733, August.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    random games; pure Nash equilibria; n players;

    JEL classification:

    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tkk:dpaper:dp71. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Aleksandra Maslowska). General contact details of provider: http://edirc.repec.org/data/tukkkfi.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.