IDEAS home Printed from
   My bibliography  Save this article

On the number of pure strategy Nash equilibria in finite common payoffs games


  • Stanford, William


No abstract is available for this item.

Suggested Citation

  • Stanford, William, 1999. "On the number of pure strategy Nash equilibria in finite common payoffs games," Economics Letters, Elsevier, vol. 62(1), pages 29-34, January.
  • Handle: RePEc:eee:ecolet:v:62:y:1999:i:1:p:29-34

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Aumann, Robert J. & Sorin, Sylvain, 1989. "Cooperation and bounded recall," Games and Economic Behavior, Elsevier, vol. 1(1), pages 5-39, March.
    2. Ehud Kalai & Dov Samet, 1983. "Unanimity Games and Pareto Optimality," Discussion Papers 546, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    3. Ben-Porath, Elchanan & Dekel, Eddie, 1992. "Signaling future actions and the potential for sacrifice," Journal of Economic Theory, Elsevier, vol. 57(1), pages 36-51.
    4. Powers, Imelda Yeung, 1990. "Limiting Distributions of the Number of Pure Strategy Nash Equilibria in N-Person Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(3), pages 277-286.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Rinott, Yosef & Scarsini, Marco, 2000. "On the Number of Pure Strategy Nash Equilibria in Random Games," Games and Economic Behavior, Elsevier, vol. 33(2), pages 274-293, November.
    2. Stanford, William, 2010. "The number of pure strategy Nash equilibria in random multi-team games," Economics Letters, Elsevier, vol. 108(3), pages 352-354, September.
    3. Roberts, David P., 2005. "Pure Nash equilibria of coordination matrix games," Economics Letters, Elsevier, vol. 89(1), pages 7-11, October.
    4. Takahashi, Satoru, 2008. "The number of pure Nash equilibria in a random game with nondecreasing best responses," Games and Economic Behavior, Elsevier, vol. 63(1), pages 328-340, May.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:62:y:1999:i:1:p:29-34. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.